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EXECUTIVE SUMMARY 

 Current evidence demonstrates that astronauts experience sleep loss and circadian 

desynchronization during spaceflight.  Ground-based evidence demonstrates that these 

conditions lead to reduced performance, increased risk of injuries and accidents, and short and 

long-term health consequences.  Many of the factors contributing to these conditions relate to the 

habitability of the sleep environment.  Noise, inadequate temperature and airflow, and 

inappropriate lighting and light pollution have each been associated with sleep loss and circadian 

misalignment during spaceflight operations and on Earth.  As NASA prepares to send astronauts 

on long-duration, deep space missions, it is critical that the habitability of the sleep environment 

provide adequate mitigations for potential sleep disruptors. 

 We conducted a comprehensive literature review summarizing optimal sleep hygiene 

parameters for lighting, temperature, airflow, humidity, comfort, intermittent and erratic sounds, 

and privacy and security in the sleep environment.  We reviewed the design and use of sleep 

environments in a wide range of cohorts including among aquanauts, expeditioners, pilots, 

military personnel and ship operators.  We also reviewed the specifications and sleep quality data 

arising from every NASA spaceflight mission, beginning with Gemini.  Finally, we conducted 

structured interviews with individuals experienced sleeping in non-traditional spaces including 

oilrig workers, Navy personnel, astronauts, and expeditioners.  We also interviewed the 

engineers responsible for the design of the sleeping quarters presently deployed on the 

International Space Station. 

 We found that the optimal sleep environment is cool, dark, quiet, and is perceived as safe 

and private.  There are wide individual differences in the preferred sleep environment; therefore 

modifiable sleeping compartments are necessary to ensure all crewmembers are able to select 

personalized configurations for optimal sleep.  A sub-optimal sleep environment is tolerable for 

only a limited time, therefore individual sleeping quarters should be designed for long-duration 

missions.  In a confined space, the sleep environment serves a dual purpose as a place to sleep, 

but also as a place for storing personal items and as a place for privacy during non-sleep times.  

This need for privacy during sleep and wake appears to be critically important to the 

psychological well-being of crewmembers on long-duration missions.  A summary of specific 

recommendations and supporting references is presented in Table 1. 
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TABLE 1. RECOMMENDATION SUMMARY  

 Recommendation   Supporting Evidence 
Sleep 

Station 

Location 

 Sleep stations should be located away from common 

areas such as the galley. 

 Sleep stations in near proximity to lavatories, but should 

be separated by a distance sufficient to minimize noise 

from the waste management systems. 

 If watch schedules are used, then crew sleep stations 

should be situated away from the command center in 

order to minimize noise from communication with 

Mission Control and equipment. 

Hoffman 2002; Astronaut SME 3 interview; Aviator SME 

interview; Navy SMEs interview; Oilrig SMEs interview; MSFC 

Skylab Structures 1974; Yan and England 2001; IFALPA 2013; 

Astronaut SME 3 interview; Aviator SME interview; Navy 

SMEs interview Hacker and Grimwood 1977; Caldwell et al. 

2000; Watt 2009; IFALPA 2013; Green 2015; Astronaut SME 2 

interview; Navy SMEs interview; Oilrig SMEs interview; 

Psychologist SME interview 

Privacy  Crewmembers should be provided with private crew 

quarters for optimal sleep health during deep space 

missions and for spending time away from other 

crewmembers. 

 Space for storing personal items should be 

accommodated in sleep stations. 

 Customization of the sleep environment should be 

allowed. 

 Hot bunking is associated with poor sleep quality, 

negative mood, and poor health and hygiene and should 

be avoided. 

Johnston 1973; Willshire 1984; Stuster 1986; Koros et al. 1993; Carrere 

and Evans 1994; Vander Ark et al. 1994; MacCallum and Poynter 1995; 

Rosekind et al. 2000; Hendrickx, 2002; Hoffman 2002; Weiss et al. 

2007; Green 2015; Astronaut SME 3 interview; Oilrig SMEs interview; 

Psychologist SME interview Yan and England 2001; Astronaut SME 1 

interview; Astronaut SME 3 interview; Navy SMEs interview; Oilrig 

SMEs interview; Psychologist SME interview Gillespie and Kelly 1974; 

Yan and England 2001; Astronaut SME 1 interview; ISS engineer 

SMEs interview; Navy SMEs interview; Oilrig SMEs interview; 

Psychologist SME interview Stuster 1986; Caldwell et al. 2000; Navy 

SMEs interview; Oilrig SMEs interview; Sleeping Bag SMEs interview 

Habitable Volume  The habitable volume of the sleep chambers for deep 

spaceflight should be a minimum of 2.1 m3.  Larger 

chambers may be required for taller crewmembers. 

 Based on previous missions, the habitable volume for a 

planetary excursion should have minimum individual 

crew quarters of 2.8 m2 in order to account for the 

reduction in usable space and to accommodate a bed, 

personal workspace and personal storage space.  

However, crew quarters of 5.4 m3 are recommended as 

there will be an increase need for privacy in response to 

the unprecedented nature of future planetary missions. 

 The minimum habitable volume for extended duration 

missions (i.e. longer than one year) was determined to 

be 25 m3 (883 ft3) per person. 

 

Bluth and Helppie 1986; Broyan Jr. et al. 2008; Allen and 

Denham 2011; Astronaut SME 1 interview; ISS engineer SMEs 

interview Yan and England 2001; Hoffman 2002; ESA 2010; 

Whitmire et al. 2015; Oilrig SMEs interview Whitmire et al. 2015 
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Sleep 

Environment 

Lighting 

 Complete darkness is optimal for sleep. Sleeping quarters 

should be able to be darkened completely. 

 Light pollution from other areas should be eliminated. 

 Indicator lights should be used only when necessary and 

should be dim and red. 

 Eye masks should be available to crewmembers. 

 Mimicking sunrise/sunset with some proportion of the 

common area lights may be desirable. 

Bierman et al. 2011; Figueiro and Rea 2012; Grandner et al. 2013; 

Figueiro et al. 2014; Thompson et al. 2014; Zeitzer 2014 NASA 

1971; Potter et al. 1998; Caldwell et al. 2000; Dijk et al. 2003; 

Green 2015; Astronaut SME 3 interview NASA 1971; Hacker and 

Grimwood 1977; Mien et al. 2014 DOA 2009; Legler and Bennett, 

2011; Astronaut SME 2 interview; Astronaut SME 3 interview; 

Aviator SME interview; Oilrig SMEs interview; Kleitman 1965; 

Halberg et al. 1970; Siffre 1988; Miller and Nguyen 2003; 

Duplessis et al. 2007; Arendt 2012; Basner et al. 2013; Young et 

al. 2015; Navy SMEs interview; Oilrig SMEs interview 

Noise  All forms of noise should be below 35 dB in sleeping 

quarters. 

 Familiar noise, such as human voices, is disruptive to 

sleep at lower decibels, so noise mitigations to protect 

against noise pollution from common areas is important. 

 Intermittent noise is more disruptive to sleep than 

continuous noise and should not vary by more than 5 dB 

from background noise. 

 Continuous white noise of < 25 dB may be useful to 

protect sleep by buffering other noises, but its use 

should be controlled by the crewmember. 

 Earplugs and noise canceling headphones should be 

made available to crewmembers. 

 The depth of sleep and individual differences predict 

arousal from auditory alarms.  Multi-sensory alarms 

may be desirable. 

Kawada et al. 1998; Marks and Griefahn 2007; Basner et al. 2008; 

World Health Organization 2009; Basner et al. 2011 Oswald et al. 

1960; Kuwano et al. 1998; Kuwano et al. 2002; Hendrickx 2002; 

Navy SMEs interview; Astronaut SME 2 interview; Astronaut 

SME 3 interview; Aviator SME interview; Oilrig SMEs interview 

NASA 1971; Johnston 1973; Hacker and Grimwood 1977; Watt 

2009; Flynn-Evans 2010; Fyhri and Aasyang 2010; IFALPA 

2013; Schmidt et al. 2013; Astronaut SME 1 interview; Navy 

SMEs interview; Oilrig SMEs interview Waye et al. 2003; Namba 

et al. 2004; Stanchina et al. 2005; Astronaut SME 3 interview; 

Aviator SME interview; Psychologist SME interview DOA 2009; 

Legler and Bennett 2011; Astronaut SME 3 interview; Aviator 

SME interview; Oilrig SMEs interview; Rechtschaffen 1966; 

Kawada and Suzuki 1999; Muzet 2007; Navy SMEs interview; 

Oilrig SMEs interview; Psychologist SME interview 

Temperature  Ambient temperature should be maintained between 

18.3-22˚C (65-72˚F) during sleep (assuming adequate 

bedding is available, cooler is better. When no insulation 

is available, hotter temperatures are required). 

 Crewmembers should have control of ambient 

temperature within the normal range in order to account 

for individual preferences. 

 Humidity should be between 40-60% relative to ambient 

temperature. 

NASA 1971; Hacker and Grimwood 1977; Ritchie and Small 

1987; Weiland 1994; Okamoto-Mizuno et al. 2009; Flynn-Evans 

2010; Kingma et al. 2014; ISS engineer SMEs interview Haskell 

et al. 1981; Okamoto et al. 1998; Okamoto-Mizuno et al. 2004; 

Lan et al. 2014; Aviator SME interview Johnston 1973; Okamoto-

Mizuno et al. 2005; Okamoto et al. 1998; Okamoto-Mizuno et al. 

2003; Astronaut SME 3 interview Haskell et al. 1981; Lin and 

Deng, 2008a; Häuplik-Meusburger 2011; Astronaut SME 2 

interview; Astronaut SME 3 interview; Navy SMEs interview; 

Sleeping Bag SMEs interview Johnston 1973; Bluth and Helppie 

1986; Kräuchi et al. 1999; Raymann et al. 2005; Raymann et al. 
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 Sufficient bedding should be provided to allow 

crewmembers to achieve a microclimate 25-35˚C (77-

95˚F). 

 Bedding should be modifiable, so that crewmembers can 

add or remove insulation based on individual preferences. 

 Providing socks or local heating sources to allow for the 

warming of proximal and distal skin temperature during 

sleep may facilitate sleep onset. 

2008; Astronaut SME 1 interview; Astronaut SME 2 interview; 

Sleeping Bag SMEs interview 

Air quality  The optimal ambient gas mixture for sleep is equivalent to 

the air experienced at sea level on Earth (78% nitrogen, 

21% oxygen, 1% other gases). 

 The optimal air pressure during sleep is equivalent to the 

pressure on the Earth at sea level. 

 In depressurized environments, such as at elevation on 

Earth, supplemental oxygen can reduce headaches, 

periodic breathing and can improve sleep outcomes. 

 Adequate ventilation should be provided for the reduction 

of CO2 and for the reduction of intrusive odors. 

 Air velocity should be between 12-36 meters/minute. 

 Air filters should be used to remove contamination from 

particulates and dust, particularly that emanating from a 

planetary excursion. 

Robin et al. 1958; Reite et al. 1975; Gothe et al. 1981; Schiffman 

et al. 1983; Selvamurthy et al. 1986; Stuster 1986; MacCallum and 

Poynter 1995; Salvaggio et al. 1998; Lo et al. 2006; Daues 2006; 

Szymczak et al. 2009; Strøm‐Tejsen et al. 2015 Miller and 

Horvath 1977; Mizuno et al. 1993; Aviator SME interview Luks et 

al. 1998; Barash et al. 2001 Hacker and Grimwood 1977; Bluth 

and Helppie 1986; FAA 2011; Strøm‐Tejsen et al. 2015; ISS 

engineer SMEs interview; Navy SMEs interview NASA 1971; 

Bluth and Helppie 1986; IFALPA 2013; Zhu et al. 2013; 

Astronaut SME 1 interview NASA 1971; Bluth and Helppie, 

1986; Craig et al. 1998; Altun et al. 2012 

Comfort Microgravity 

 The bedding provided during spaceflight should: 

o allow for crewmembers to strap themselves to 

the inside of a sleep station if desired. 

o be easily cleaned. 

Planetary excursion 

 The bedding provided for a planetary excursion 

should: 

o allow for horizontal positioning on a flat surface. 
o be sized to accommodate movement during sleep 

and changes in body position. 

o provide natural fiber bedding for breathability. 

o provide a medium-firm mattress, blankets and 
pillows selected by the crewmember. 

Astronaut SME 1 interview; Astronaut SME 3 interview; 

Psychologist SME interview; Sleeping Bag SMEs interview 

Astronaut SME 3 interview; Aviator SME interview; ISS engineer 

SMEs interview; Sleeping Bag SMEs interview Nicholson and 

Stone 1987; Spencer and Robertson, 2000; SAE International 

2006; Shen et al. 2012; Bluth and Helppie 1986; Verhaert et al. 

2011; Astronaut SME 3 interview; Aviator SME interview; 

Sleeping Bag SMEs interview Yao et al. 2007; Aviator SME 

interview Persson and Moritz 1998; Rosekind et al. 2000; 

Jacobson et al. 2007; Jacobson et al. 2008; Jacobson et al. 2009; 

Gordon and Grimmer-Somers 2011; Verhaert et al. 2011; Jeon et 

al. 2014; Aviator SME interview; Navy SMEs interview; Oilrig 

SMEs interview 
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Turbulence  Vehicle movement should be minimized in order to 

facilitate sleep.  When vehicle movement occurs, the 

sleep opportunity should be lengthened to allow for 

adequate sleep. 

Mantsangas et al. 2015; Aviator SME interview; Navy SMEs 

interview 

Safety  Uncertainty about safety can induce anxiety, leading to 

sleep disruption.  Clear and accurate information about 

safety hazards should be provided to crewmembers in 

order to alleviate stress due to false alarms regarding 

safety. 

NASA 1970; NASA 1971; Shephard Jr 1972; Aviator SME 

interview; Psychologist SME interview 

Backup  

Systems 
 Given the importance of sleep quality, there should be 

an emergency deployable sleep station and thermal 

blankets in the event that a sleep station is damaged. 

Astronaut SME 1 interview; Psychologist SME interview 
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INTRODUCTION 

 Sleep quality, including the ability to fall asleep and remain asleep, and sleep duration are 

dependent upon circadian phase, length of prior wake duration, and time within the sleep episode 

(Akerstedt and Gillberg 1979; Klerman et al. 2002; Wilkinson 1969).  Quantification of this 

dependency has demonstrated that proper alignment of scheduled sleep episodes to the circadian 

pacemaker is important for sleep consolidation and sleep structure (Dijk and Czeisler 1994; Dijk 

and Czeisler 1995).  High sleep efficiency is best maintained for eight hours when sleep is 

initiated approximately six hours before the endogenous circadian minimum of core body 

temperature (Dijk and Czeisler 1994; Dijk and Czeisler 1995).  Sleep onsets before or after this 

time result in significantly lower sleep efficiencies, either due to increased wake during the sleep 

episode or shorter sleep episode durations.  This phase relationship between the rest-activity 

cycle and the endogenous circadian timing system implies that even small circadian phase delays 

of the sleep propensity rhythm with respect to the rest-activity schedule can result in sleep onset 

insomnia or substantial wake after sleep onset. 

 In order to quantify the impact of a sub-optimal sleep environment on sleep quality and 

duration, it is important to measure sleep outcomes when sleep is appropriately timed relative to 

the circadian and homeostatic drives for sleep.  It is possible for an individual to experience sleep 

disruption in an optimal sleep environment due to the imposed sleep schedule.  Similarly, it is 

possible for an individual to experience high sleep efficiency in a sub-optimal sleep environment 

when accumulated sleep debt is present, which dampens the arousal threshold.  Our aim was to 

compile the evidence associated with sleep disruption due to controllable, environmental stimuli 

in order to aid NASA engineers and operational personnel in the optimal design of crew sleep 

accommodations for deep spaceflight. 

METHODS 

 We conducted a comprehensive literature review summarizing optimal sleep hygiene 

parameters for lighting, temperature, airflow, humidity, comfort, intermittent and erratic sounds, 

and privacy and security in the sleep environment.  We reviewed the design and use of sleep 

environments in a wide range of cohorts including among aquanauts, expeditioners, pilots, 

military personnel and ship operators.  We also reviewed the specifications and sleep quality data 

arising from every NASA spaceflight mission, beginning with Gemini.  Finally, we conducted 

structured interviews with individuals experienced in sleeping in non-traditional spaces including 

oilrig workers, Navy personnel, astronauts, and expeditioners.  We also interviewed the 

engineers responsible for the design of the sleeping quarters presently deployed on the 

International Space Station. 

SLEEP HYGIENE 

 Even when sleep is timed to provide for an optimal sleep opportunity, an inappropriate 

sleep environment can lead to disrupted sleep and reduced sleep quality.  Environmental factors 

such as light and noise pollution, inappropriate ambient temperature, air quality and humidity, 

altitude, and comfort each have the potential to interfere with the quality and quantity of sleep. 

Light 

 Light leads to sleep disruption due to two primary factors; first, light resets the circadian 

pacemaker, leading to a shift in the timing of phase relative to the scheduled sleep episode and 

second, light is an environmental stimulus that can cause sleep disruption and night waking. 
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 Light is the primary synchronizer of the human circadian rhythm.  The circadian 

pacemaker is the internal biological clock, located in the suprachiasmatic nucleus (SCN) of the 

hypothalamus.  The circadian rhythm is reset by exposure to light through the eyes, which is 

transmitted down the retinohypothalamic tract to the SCN (Czeisler and Dijk 1995; Czeisler and 

Gooley 2007).  The SCN is the master pacemaker that coordinates the rhythms of a variety of 

measurable output rhythms including sleep propensity, alertness, performance, hormone 

production (e.g. melatonin, cortisol) and the body temperature (Klerman et al. 1999). 

 Regular timing of light exposure on Earth leads to entrainment to the 24-hour day.  In the 

absence of photic cues, the circadian pacemaker will revert to its endogenous period, as is the 

case for totally blind individuals (Flynn-Evans et al. 2014).  For circadian resetting, the intensity, 

spectra, duration, and timing of light determine the magnitude and direction of phase shifting and 

potency of acute alerting (Lockley 2005).  Under carefully controlled lighting conditions, the 

circadian rhythm is capable of being reset to a non-24-hour period.  When an imposed light-dark 

cycle is too rapid or too long for circadian entrainment, circadian desynchronization occurs, such 

that the internal biological function, including the drive for sleep is misaligned relative to the 

imposed schedule (Czeisler and Gooley 2007). 

 Under normal conditions (and in the absence of countermeasures), when a person is 

exposed to regularly timed light during the day and darkness at night, biological function will be 

synchronized with poorest performance, lowest alertness, melatonin production and the primary 

drive to sleep occurring during the night and peak performance and alertness occurring during 

the day.  The fluctuation in the circadian rhythm may also be revealed when conditions including 

light exposure are held constant over a 24-hour period of time, such as during an experimental 

constant routine (CR) protocol (Minors and Waterhouse 1984) or in extended-duty work shifts 

(Lockley et al. 2004).  When light exposure is not regularly timed, circadian misalignment can 

result, where the drive to sleep, and alertness and performance are not optimally timed relative to 

scheduled wake and sleep. 

 Light also has a direct effect on the hormone melatonin and on alertness.  Under normal 

light-dark conditions, melatonin (N-acetyl-5-methoxytryptamine) is produced during darkness by 

the pineal gland upon receiving input from the SCN (Kneisley et al. 1978; Zeitzer et al. 2000).  

Melatonin production is acutely suppressed following exposure to light during the biological 

night.  Similarly, exposure to light suppresses sleep and promotes alertness (Rahman et al. 2014), 

therefore it is important to eliminate light pollution during scheduled sleep episodes. 

 Although the majority of light exposure occurs during waking, inappropriately timed 

light exposure is capable of inhibiting sleep onset and leading to shifts in circadian phase that can 

impact sleep on subsequent nights.  Evening light exposure as low as 65 lux is capable of shifting 

circadian phase and sleep by one hour compared to evening light exposure of 3 lux (Burgess and 

Molina 2014).  In addition, pre-bedtime light exposure from illuminated e-readers and computers 

leads to circadian phase shifts of an hour or more relative to exposure to typical dim ambient 

lighting (Chang et al. 2015). 

 The potency of the light stimulus on human physiology depends on the wavelength of 

light in addition to the intensity of the light.  The human circadian pacemaker is most sensitive to 

short-wavelength light in the 460-480 nm range (Brainard et al. 2008; Lockley et al. 2006; 

Rahman et al. 2014).  This response follows a dose response with higher irradiances of blue light 

eliciting greater suppression (West et al. 2011).  Although blue light is the most powerful 
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circadian time cue and alertness-promoting wavelength, other wavelengths of light also have an 

effect on circadian timing and alertness.  The human visual system has peak sensitivity to green 

light of approximately 555 nm (Gooley et al. 2012; Zaidi et al. 2007).  Gooley and colleagues 

demonstrated that both blue and green wavelength light are capable of eliciting melatonin 

suppression, but the effect of green light is temporary, while blue light elicits sustained 

suppression (Gooley et al. 2010).  In contrast, exposure to low intensity red light does not 

suppress melatonin (Brainard et al. 2001), but is capable of eliciting phase shifts, when timed 

near the circadian nadir (Mien et al. 2014). 

 Given that the light signal must be transmitted through the eyes in order to reach the 

circadian pacemaker, most researchers have examined the impact of light on sleep and circadian 

phase in awake individuals with their eyes open.  Recent evidence suggests that the eyes do not 

need to be open in order for light to induce a circadian phase shift.  Five studies have 

demonstrated that light can be transmitted through the eyelids.  Bierman and colleagues showed 

that light between the 450-650 nm wavelengths could be transmitted through the eyelid at about 

9% (Bierman et al. 2011).  Of note, the authors did not find that skin pigmentation was 

significant in modulating the amount of light that was transmitted.  The same group 

demonstrated in two separate studies that light exposure through the eyelids was capable of 

suppressing melatonin and shifting circadian phase when administered during the biological 

night, during conditions of sleep or wake (Figueiro et al. 2014; Figueiro and Rea 2012).  Another 

group examined the impact of dawn simulation on the dissipation of sleep inertia and found 

increased melatonin suppression and improved subjective sleep quality following a dawn 

simulation, however, the researchers did not verify that the participants were sleeping with eyes 

closed throughout the exposure (Thompson et al. 2014).  A similar study by Grandner and 

colleagues demonstrated that a light mask timed to deliver light through closed eyelids, 

approximately two hours prior to habitual wake time, was sufficient to cause a phase advance in 

circadian phase, although they also did not verify objectively that the participants’ eyes were 

closed throughout the light exposure sessions (Grandner et al. 2013).  Zeitzer and colleagues 

conducted the most rigorous study examining the impact of light during polysomnographically 

confirmed sleep (Zeitzer et al. 2014).  For this study, researchers evaluated the effect of 

millisecond flashes of light on circadian phase shifting and sleep architecture.  They found that 

light flashes of 2 milliseconds given every 30 seconds for one hour during sleep was sufficient to 

cause a phase shift of approximately 30 minutes.  The authors did not find that the light caused 

any significant difference in sleep stage or power density, but they did find that the brain waves 

registered an extra-retinal potential timed with each light flash, supporting the notion that 

extremely brief light flashes are capable of being registered by the brain and have an impact on 

circadian timing. 

 Although Zeitzer and colleagues found no change in sleep quality or stage following 

millisecond pulses of light exposure during sleep, other evidence suggests sleeping with a light 

on all night is associated with reduced sleep quality.  Cho and colleagues examined the impact of 

constant light exposure on human sleep quality and duration (Cho et al. 2013).  They conducted a 

randomized within-subjects experiment comparing polysomnography defined sleep on a night in 

darkness to sleep on a night with a 40-lux light source on all night.  They found that study 

participants had reduced slow wave sleep, increased arousals and increased presence of stage 1 

sleep in the light condition compared to the dark condition, with no difference in total sleep time 

between the two nights.  These findings suggest that continuous illumination from a dim light 

source is sufficient to lead to sleep disruption and altered sleep architecture. 
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Noise 

 Exposure to noise can disrupt sleep quality and quantity.  The magnitude of sleep 

disruption conferred by noise depends on the decibel level (dB), the frequency and pitch, 

duration (i.e. continuous, intermittent, or impulsive) and whether the noise is meaningful (e.g. a 

familiar voice).  The frequency range for hearing in humans is between 20 hertz (Hz) and 20,000 

Hz (Rosen and Howell 2011).  Reference values for different types of noise exposure are 

presented in Table 2.  The Occupational Safety and Health Administration standards limit 

workplace noise exposure to 90 dBA for eight hours of work (Occupational Safety & Health 

Administration).  Exposure to eight hours of noise (74-76 dB) has been shown to increase 

hearing thresholds by 4-5 dB for low frequencies and 5-10 dB for high frequencies (i.e. a higher 

volume than previously is needed to be perceived (Chernigovskiy 1969).  The World Health 

Organization working group report on noise determined that there is a causal relationship 

between nighttime noise exposure and self-reported sleep disturbances, use of pharmaceuticals, 

self-reported health problems, and insomnia-like symptoms (World Health Organization 2009).  

The same group issued guidelines for noise exposure during sleep, setting the maximum noise 

during sleep at 35 dB, citing that higher levels of noise in the sleep environment leads to changes 

in the duration of sleep stages and increase sleep fragmentation.  A summary of noise levels that 

have been shown to disrupt sleep are presented in Table 3. 

TABLE 2. NOISE REFERENCES 

Reference Event Noise (dB) 

Threshold of hearing (1000 Hz) 0 

Silent study room 20 

North rim of Grand Canyon 30 

Soft whisper (5 ft away) 40 

Urban Residence  50 

Conversation (3 ft away) 60 

Classroom chatter 70 

Freight train (100 ft away) 80 

Boiler room 90 

Construction site 100 

Night club (with music) 110 

Operating heavy equipment 120 

Jet taking off (200 ft away) 130 

Threshold of pain 140 
Note: Adapted from Occupational Safety & Health 

Administration (Occupational Safety & Health Administration). 

 Intermittent noise is generally perceived as more disruptive to sleep than continuous 

noise.  A majority of research investigating the impact of intermittent noise on sleep has come 

from investigations of the impact of noise emanating from trains, aircraft flyovers, and 

automobiles.  In order to investigate the impact of traffic noise on sleep, Kawada and colleagues 

exposed 15 participants to controlled noise simulating a passing truck amplified to 45 dBA, 50 

dBA, 55 dBA, 60 dBA or a quiet control night (Kawada et al. 1998).  They found that exposure 

to all levels of truck noise resulted in an immediate transition to lighter sleep when a participant 

was in stage 2, stage 3 or REM sleep.  Similarly, Basner and colleagues conducted a laboratory 

study where they exposed individuals to different combinations of intermittent aircraft (39.7 dB), 
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rail (39.7 dB) or traffic (36.9 dB) noise during sleep episodes over 11 nights (Basner et al. 2011).  

They characterized the noise sources and found that rail noise contained the highest low 

frequency noise (peak mean at 31.5 Hz), while air and road noise peaked at the 63 Hz frequency.  

Compared with a baseline quiet night, they found that exposure to any type or combination of 

noise was associated with a reduction in slow wave (deep) sleep, an increased frequency of 

arousals, and increased frequency of sleep stage transitions.  Participants also reported feeling 

unrested following exposure to any of the noise conditions relative to baseline.  In a separate 

study, Schmidt and colleagues exposed 75 participants to two different noise exposure nights of 

30 or 60 aircraft flyovers of 60 dBA and a quiet control night (Schmidt et al. 2013).  They found 

that both 30 and 60 pulses of 60 dBA noise resulted in sleep disruption compared to the control 

night.  In a similar experiment, Basner and colleagues found that the number of awakenings and 

transitions to stage 1 sleep due to aircraft noise were increased in response to noise at 65 dBA 

compared to a quiet control night (Basner et al. 2008).  In the same study, they reported that the 

odds of experiencing sleep stage changes, and arousals from sleep were significantly increased 

following exposure to both 45 dBA and 65 dBA noise.  These findings highlight the notion that 

intermittent noise can disrupt sleep by altering sleep architecture in addition to increasing night 

waking. 

 Heavy road traffic noise, such as that coming from a highway, and exposure to wind 

turbines can be considered environmental sources of continuous noise.  Wind turbines have also 

been identified as a source of continuous environmental noise that disrupts sleep.  Nissenbaum 

and colleagues found that individuals living within 1.5 km from a wind turbine, where noise 

levels were estimated to range between 40-52 dBA, reported poorer sleep with higher Pittsburgh 

Sleep Quality Index and Epworth Sleepiness Scores compared to those living 3-7 km from the 

wind turbine (Nissenbaum et al. 2012).  Although highway road traffic may produce continuous 

noise during sleep, variations in pitch within traffic distinguish such noise from noise generated 

from wind turbines and other sources of continuous noise.  Fyhri and Aasvang conducted a study 

in Oslo, Norway evaluating subjective sleep quality in response to different levels of traffic noise 

among 2,786 participants (Fyhri and Aasvang 2010).  They found that only 35% had nighttime 

noise levels that were below 40 dB and 10% experienced levels above 55 dB.  Reported 

annoyance to nighttime noise was strongly related to sleep problems and such noise-related sleep 

disruption was particularly apparent in individuals with cardiovascular problems, who reported 

poorer quality of sleep, being awoken more frequently in the morning, and higher levels of 

daytime tiredness.  This may also relate to the fact that exposure to environmental traffic noise 

during sleep results in more arousals in men compared to women (Roosli et al. 2014).  

Additionally, Fyhri and Aasvang also found gender to be a predictor of cardiovascular problems, 

with men to be more likely to develop cardiovascular problems, though no relationship between 

noise and cardiovascular problems was found (Fyhri and Aasvang 2010). 

 Several laboratory studies have been conducted to evaluate the impact of exposure to 

continuous simulated environmental noise on sleep.  In a laboratory study designed to evaluate 

the impact of air, road and rail noise, Marks and Griefahn exposed 24 participants over 13 nights 

to randomized conditions of 39 dBA, 44 dBA, 50 dBA, and a pink noise control night (i.e. noise 

with equal contribution from each frequency) of 32 dB (Marks and Griefahn 2007).  They found 

that the noise conditions were associated with more arousals, shorter total sleep duration, poorer 

sleep efficiency, more time in stage 1 sleep, and suppressed slow wave and REM sleep, however, 

they did not report whether there were differences between the noise exposure conditions.  In 

support of those findings, Scott reported that exposure to 93 dB of white noise every night for 
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eight nights, resulted in decreased REM sleep and increased stage 1 and 2 sleep relative to sleep 

in a quiet environment (Scott 1972).  In contrast, Popp and colleagues conducted a laboratory 

study examining the impact of road noise on truckers sleeping in truck berths and found that 

exposure to recorded traffic, averaging 44 dBA, resulted in no significant difference in sleep 

duration, sleep efficiency, arousals or sleep stage transitions compared to a silent control night 

(Popp et al. 2015).  Of note, that group did not study a control group in a quiet bedroom setting, 

so it is difficult to determine how much sleeping in the truck berth contributed to sleep disruption 

in both conditions. 

 Although exposure to high levels of continuous noise can be disruptive to sleep, 

continuous noise can protect sleep by dampening the influence of exposure to other intermittent 

noises.  A study of 20 individuals conducted by Namba and colleagues demonstrated that 

exposure to continuous noise of 30-35 dBA, similar to that generated by an air conditioner, had 

no effect on sleep relative to a baseline night of silence (Namba et al. 2004).  However, exposure 

to continuous noise over 35 dBA resulted in sleep disruption.  Similarly, Waye and colleagues 

conducted a within-subject study of 12 males and found that compared to a reference night with 

a background of 25 dBA, exposure to low frequency noise of 31.5 to 125 Hz at 40 dBA led to a 

longer sleep latency (~40 minutes vs. 20 minutes for the reference night; Waye et al. 2003).  

Stanchina and colleagues found that exposure to white noise reduced the number of arousals 

from sleep due to recorded ICU noise.  These findings suggest that the addition of low decibel 

white noise can increase the arousal threshold in an environment where intermittent noises are 

likely (Stanchina et al. 2005).  These studies suggest that continuous noise can be useful in 

protecting against intermittent noise intrusion, but should be kept below 35 dBA for preservation 

of sleep. 
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TABLE 3. NOISE LEVELS THAT HAVE BEEN SHOWN TO DISRUPT SLEEP. 

Source of Disruption Noise Level Type of Noise Source 

Recommended night noise level limit  40 dBALnight, outside Not specified WHO (2009) 

Air conditioner-like noise 35 dBA Continuous Namba et al. (2004) 

Sleep disruption can be detected by EEG 35 dBLAmax, inside Not specified WHO (2009)  

Aircraft noise caused reduced sleep quality 37-40 dBA Intermittent  Basner et al. (2011) 

Transportation noise exposure lead to poor sleep 

quality 

39-50 dBA Continuous Marks &Griefahn (2007) 

Low frequency noise (31.5 - 125 Hz) lead to 

fatigue in morning 

40 dBA Intermittent Waye et al. (2003) 

Reported lower subjective sleep quality in 

response to wind turbine noise exposure 

40-52 dBA Continuous Nissenbaum et al. (2012) 

Intermittent &premature waking can occur 42 dBL Amax, inside Not specified WHO (2009) 

Traffic noise caused sleep disruption 45-60 dBA Intermittent Kawada et al. (1998) 

Aircraft noise caused sleep disruption 60 dBA Intermittent Schmidt et al. (2013) 

Aircraft noise caused poorer sleep quality 60 dBA Intermittent Basner et al. (2008) 

White noise exposure caused decrease REM and 

S1/S2 sleep. 

93 dBA Continuous Scott (1972) 

Note: dBA denotes A-weighted decibels (where low frequencies are reduced); dBALAmax, inside denotes maximum levels per event inside a bedroom; 

dBALAmax, outside denotes maximum level per event outside a bedroom; dBALnight, outside is defined as the 1 year LAeq (A- weighted equivalent sound 

pressure level) exposure over 8 h outside at the most exposed façade. 
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 The auditory arousal threshold that causes a transition from sleep to wake has significant 

implications both for development of countermeasure strategies to protect against noise-related 

sleep disruption and for the design of alarms sufficient to cause awakenings during emergency 

situations.  Rechtschaffen and colleagues used repeated 5-second exposures to fixed tones of 

various intensities to evaluate the auditory arousal threshold among seven individuals over nine 

nights (Rechtschaffen et al. 1966).  They found that the average auditory arousal threshold was 

65 dB, however, they observed wide individual differences in noise sensitivity, ranging from 15 

dB to 100 dB.  In the same study, the investigators determined individual arousal thresholds to 

quantify the difference in arousal threshold by sleep stage.  Using the same decibel-level sound, 

they found that participants woke at approximately the same rate from stage 2 and REM sleep, 

but only 19% of the time during slow wave sleep, highlighting the differences in arousal 

threshold by sleep stage.  These findings were confirmed in subsequent experiments, 

demonstrating that awakening due to noise exposure is more likely in shallow stages of sleep 

(i.e. stages 1 & 2), in contrast to deeper stages of sleep (i.e. stages 3 & 4; Kawada and Suzuki 

1999; Muzet 2007).  It is notable that the arousal threshold in REM sleep is not easily determined 

due to the influence of dreaming.  In a pilot experiment (described in Rechtschaffen 1966), the 

investigators attempted to determine the auditory threshold using a gradually increasing stimulus, 

but found that the arousal threshold in REM sleep was inconsistent, with some individuals never 

waking in response to a tone, but instead incorporating the auditory stimulus into dream content.  

This finding highlights a challenge that may arise with the development of alarms designed to 

quickly wake an individual from sleep. 

 The awareness of sleeping individuals to their surroundings can also contribute to 

increased awakenings.  For example, speaking a sleeper's name can be more arousing than a 

louder, but more neutral noise (Oswald et al. 1960).  Similarly, exposure to talking at 25 dBA is 

reportedly more disruptive to sleep compared to other ambient sounds, such as traffic and air 

conditioning (Kuwano et al. 2002; Kuwano et al. 1998).  Such noise disruption may not be 

limited to meaningful noise, but may also result from other local and familiar noise sources, such 

as noises emanating from a bed partner, household noises and neighborhood noise, which have 

been shown to be more disruptive than noises emanating from distant sources, such as aircraft 

and traffic noise (Sasazawa et al. 2006).  These findings highlight the importance of separating 

sleep spaces from community spaces, where quiet conversation may occur. 

 Although the low decibel sound of human voices results in sleep disruption, there is some 

evidence to suggest that sleeping in an unfamiliar environment exacerbates sleep disruption due 

to noise.  Stevenson and Mckellar (1989) found that individuals were about 10 dB more sensitive 

in laboratory settings than they were in familiar, at-home settings (Stevenson and McKellar 

1989).  Additionally, Öhrström and Skånberg found that participants were more likely to wake in 

response to noise in laboratory settings in comparison to more familiar settings (Öhrström and 

Skånberg 2004).  This finding is supported by Horne et al. who found that there was no 

relationship between sound levels of 82 dBA (measured outside a residence) and sleep 

disturbances for those sleeping in a familiar environment (Horne et al. 1994). 

 Although individuals may report that they have habituated to local noise, there is 

evidence to suggest that sleep disruption still occurs.  In a community setting, individuals who 

reported being the least annoyed with traffic noise experienced the most sleep disruption 

compared to those who reported being very annoyed by traffic noise.  However, those who lived 

in the noisiest environments also had the poorest sleep outcomes (Fyhri and Aasvang 2010).  
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These findings were confirmed by Kuroiwa and colleagues, who exposed individuals to 49.6 

dBA for 10 nights and found that habituation was apparent in subjective ratings from 

participants, but polysomnographically determined sleep showed continued evidence of sleep 

disruption (Kuroiwa et al. 2002).  Similarly, autonomic arousals in response to noise during sleep 

have been observed in the absence of complete waking from sleep (Griefahn and Robens 2010).  

These findings suggest that although the perceived disruption from habituated noise may be 

reduced, sleep disruption is still evident in physiological measures. 

Ambient Temperature 

 The relationship between endogenous core body temperature, skin temperature, ambient 

thermal temperature, airflow and humidity, clothing, and insulation of bedding must all be taken 

into account when evaluating the impact of temperature on sleep (Figure 1).  Under normal 

conditions, the circadian rhythm of core body temperature declines just prior to the time of 

optimal sleep onset and continues to decline throughout the sleep episode, reaching a nadir at 

approximately six hours after sleep onset (Dijk and Lockley 2002; Krauchi and Wirz-Justice 

1994).  During a circadian entrained sleep episode, the morning waking occurs on the rising 

phase of core body temperature rhythm.  This change in core temperature arises from a drop in 

heat production due to a reduction in the metabolic rate (Senses et al. 2013) and heat loss due to 

inactivity (Krauchi and Wirz-Justice 1994).  In contrast, proximal and distal skin temperatures 

rise during sleep, relative to active waking (van Marken Lichtenbelt et al. 2006).  A sleep 

environment that facilitates nighttime skin warming is typically self-selected by individuals 

through the use of bedding and clothing to create a microclimate within the ambient 

environment. 
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Figure 1.  Schematic overview of autonomic and behavioral control of thermal insulation.  Solid 

arrows denote relation and/or control and dashed arrows denote heat flow.  Adapted from 

Kingmaet al 2014. TNZ = thermal neutral zone, TCZ = thermal comfort zone, Tcore = core body 

temperature, Tskin = skin temperature, Tclothing = clothing insulation, Tair = ambient 

temperature and airflow. 

 During wake and sleep, the core and skin temperature interact to maintain a balance 

between heat loss and heat production.  Ambient thermoneutrality, the point at which ambient air 

temperature allows for optimal maintenance of core (36-38˚C, 96.8-100.4˚F) and skin 

temperature (32˚C, 89.6˚F) in the absence of clothing and bedding ranges from 27.9-28.5˚C 

(~82-83˚F; Kingma et al. 2014).  Ambient temperatures above this range induce sweating, while 

temperatures below this range induce shivering.  The addition of insulation, such as clothing or 

bedding allows for a substantial reduction in ambient temperature required to preserve 

thermoneutrality, with typical clothing allowing for an optimal ambient temperature range 

between 14.8-24.5˚C (58-76˚F; (Kingma et al. 2014).  Table 4 summarizes what ambient 

temperature is required to maintain thermoneutrality with varying insulation. 
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TABLE 4. SUMMARY OF FINDINGS FOR PRESERVATION OF AMBIENT 

THERMONEUTRALITY 

Finding 
Ambient 

Temperature 
Source 

Ambient thermoneutrality with insulation present (e.g. 

clothing/bedding) 

14.8-24.5˚C 

58-76˚F Kingma et al. (2014) 

Ambient thermoneutrality (clothed) 

20-22.2˚C 

68-72˚F Lin & Deng (2008a) 

Ambient thermoneutrality for maintaining skin 

temperature in absence of clothing and bedding 

27.9-28.5˚C 

82.2-83.3˚F Kingma et al. (2014) 

Ambient thermoneutrality (semi-nude) 

28-32˚C 

82.4-89.6˚F Lin & Deng (2008a) 

Ambient thermoneutrality (semi-nude) 

29˚C 

84.2˚F 

Okamoto-Mizuno & 

Mizuno (2012) 

 Ambient temperature and humidity are intimately linked.  The optimal humidity for 

human comfort ranges between 40-60%.  As humidity levels rise above this range, the ambient 

temperature feels hotter than the measured dry bulb temperature and as they fall below this 

range, the ambient temperature feels colder (Steadman 1979).  Exposure to very low humidity 

levels, such as during a cold winter, leads to increased prevalence of nosebleeds (Rijal et al. 

2012), itching, and dry eyes (Sunwoo et al. 2006).  Conversely, exposure to high humidity is 

associated with poorer air quality and increased air concentration of mites, airborne fungal 

spores, bacteria and viruses and airborne contaminants (Baughman and Arens 1996). 

 When humidity levels are outside this range sleep is also negatively affected.  Okamoto-

Mizuno and colleagues compared sleep under 26˚C (78.8˚F) with 50% relative humidity to sleep 

under 32˚C (89.6˚F) with 80% relative humidity and found that the high humidity condition was 

associated with more sleep disruption (Okamoto-Mizuno et al. 2005).  In addition, the 

introduction of humidity in continuous positive airway pressure (CPAP) treatment for sleep 

apnea is associated with reduced dry nose and mouth (Mador et al. 2005; Ruhle et al. 2011).  

Similarly, humidity delivered through a heated breathing tube, combined with low ambient 

temperature has been shown to decrease daytime sleepiness, improve sleep efficiency, and 

increase total sleep time in sleep apnea patients (Nilius et al. 2008).  Conversely, damp 

environments have been shown to be associated with sleep disruption including difficulty with 

sleep initiation, sleep fragmentation and early morning waking (Janson et al. 2005), highlighting 

the need for moderation of the humidity in the environment. 

 During sleep, the ambient temperature required for thermoregulation also varies 

depending on clothing.  The insulation of clothing is measured in Clo, where naked is equal to 0 

Clo, 1 Clo is approximately equal to wearing comfortable clothing in an ambient temperature of 

21˚C (70˚F) and 4 Clo is approximately equal to the insulation required for being outside in 

arctic conditions (Stellman 1998).  When individuals sleep semi-nude (Clo 0.04), ambient 

temperatures ranging between 28-32˚C (82-90˚F) are required to maintain thermoneutrality (Lin 

and Deng 2008a).  In contrast, temperatures ranging from 20-22.2˚C (68-72˚F) are sufficient for 

individuals when sleeping naked covered in bedding (Lin and Deng 2008a).  In an evaluation of 

different combinations of bedding and pajamas on a standard manikin exposed to an ambient 

temperature of 22˚C (71.6˚F), Lin and Deng found that Clo ranged between 0.90 and 4.89 

depending on the use of sleeping materials (Lin and Deng 2008b).  These differences in Clo 
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illustrate the wide range in possible combinations of sleep insulation that are chosen by 

individuals. 

 Heat and cold affect sleep in different ways depending on the interaction between 

ambient temperature and insulation.  When individuals sleep with minimal clothing and no 

blankets, ambient temperatures both above and below the thermoneutral range cause sleep 

disruption.  In these cases, temperatures below the thermoneutral zone increase night waking, 

while temperatures above the thermoneutral zone both increase night waking and alter sleep 

architecture.  In a study of six young semi-nude adult males, Haskell and colleagues studied the 

impact of ambient temperatures of 21, 24, 29, 34 and 37˚C (69.8, 75.2, 84.2, 93.2, and 98.6˚F, 

respectively) on sleep (Haskell et al. 1981).  They found that compared to the thermoneutral 

condition of 29˚C (84.2˚F), sleeping in 21˚C (69.8˚F) elicited the greatest sleep disruption, which 

resulted in reduced time in REM and increased waking and stage 1 sleep, a finding likely due to 

the cold ambient temperature amplifying the cold sensation experienced during the drop in core 

body temperature, which immediately precedes REM-rich sleep cycles (Czeisler et al. 1980).  

The authors also observed wide inter-individual differences in tolerance to cold temperatures.  In 

the same sample, warmer temperatures of 34-37˚C (93.2-98.6˚F) also disrupted sleep, but not as 

dramatically. 

 Ambient temperatures at or above the thermoneutral zone have been shown to suppress 

slow wave sleep, while temperatures at or below thermoneutrality have been shown to enhance 

or restore slow wave sleep.  Togo and colleagues found that partially nude individuals sleeping 

in 29.5˚C (85˚F) experienced more slow wave sleep when the ambient temperature was slowly 

reduced to 27.5˚C (81˚F) over the second to fourth hour of a sleep episode, relative to sleep in a 

continuous ambient temperature of 29.5˚C (85.1˚F; (Togo et al. 2007).  Similarly, another group 

found that sleeping in a hot ambient environment of 35˚C (95˚F) during sleep restriction of four 

hours suppressed slow wave sleep relative to sleep in 20˚C (68˚F; (Bach et al. 1994). 

 When insulation, such as clothing and a blanket are used, hotter ambient temperatures are 

more disruptive to sleep compared to colder temperatures, likely due to the fact that access to 

insulating material allows for individuals to modify the sleep environment during a sleep episode 

(i.e. through the addition or removal of blankets).  In a study measuring the impact of wearing 

lightweight pajamas and a light blanket (Clo 1.64) under ambient temperatures of 23˚C, 26˚C 

and 30˚C (73.4˚F, 78.8˚F, & 86˚F), Lan and colleagues found 23˚C (73.4˚F) and 30˚C (86˚F) 

were both associated with a longer sleep latency compared to 26˚C (78.8˚F; Lan et al. 2014).  

They also found that slow wave sleep and subjective sleep quality was reduced in both the 23˚C 

(73.4˚F) and 30˚C (86˚F) conditions compared to the 26˚C (78.8˚F) condition.  A similar finding 

has been reported in older men (mean age 69.2 ± 1.35 years), who reportedly sleep better in 

lightweight pajamas with a light blanket at 26˚C (78.8˚F) compared to 32˚C (89.6˚F; Okamoto-

Mizuno et al. 2004).  Under typical circumstances, individuals tend to self-select a bedding 

microclimate of between 33-35˚C (91-95˚F), until the rising phase of the core temperature 

rhythm (Okamoto et al. 1998; for review, see Van Someren et al. 2002), when individuals tend to 

remove covering and reduce the bedding microclimate to approximately between 25-30˚C (77-

86˚F; Okamoto-Mizuno et al. 2003).  When individuals sleep with bedding insulation sufficient 

to maintain a bedding microclimate within the typical range, sleep quality and quantity is 

reportedly unaffected even at extremely low ambient temperatures of 3-17˚C (37-62˚F; 

Okamoto-Mizuno et al. 2009).  A recent study evaluating sleep among hunter-gatherer tribes in 

South America and Africa showed that proximal skin temperature was maintained throughout a 
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night of sleep, despite a drop in temperature overnight from approximately 20˚C to 10˚C (68˚F to 

50˚F), presumably due to the maintenance of a bedding microclimate (Yetish et al. 2015). 

 The high temperature of the bedding microclimate may promote skin warming and 

thereby facilitate the initiation and maintenance of sleep.  Skin temperature is elevated during 

sleep relative to active wake (van Marken Lichtenbelt et al. 2006) and mechanisms that increase 

vasodilation have been shown to result in faster sleep onset.  The endogenous distal-proximal 

skin temperature gradient transition to warm distal and cool proximal skin temperature has been 

shown to be associated with rapid sleep onset in a bed-rest protocol (Kräuchi et al. 1999), 

suggesting that warm feet and hands precede optimal sleep initiation.  In a laboratory study 

where individuals were not confined to bed rest between sleep opportunities, Raymann has 

shown that using a thermosuit to warm proximal, rather than distal skin regions is associated 

with improved sleep latency, even when sleep opportunities occurred during the biological day 

(Raymann et al. 2005).  In this randomized, within subjects study, individuals were exposed to 

warm and cold manipulation of the proximal skin, distal skin and core body temperature via a 

thermosuit and ingestion of hot and cold beverages.  The thermosuit was warmed to 33˚C 

(91.4˚F) in the cool condition and 37˚C (98.6˚F) in the warm condition capturing the impact of 

sleeping in temperatures just under and just above the high and low range of the typical sleeping 

microclimate.  This manipulation of temperature resulted in a skin temperature difference of 

0.78˚C (33.4˚F) in the proximal warming condition, and resulted in a significantly faster sleep 

onset relative to the cool condition, suggesting that modest skin warming is sufficient to 

accelerate sleep onset.  In a similar study by the same group, when skin temperature was warmed 

to at or above approximately 33.5˚C (92˚F) young and older individuals experienced fewer night 

awakenings and increased deep sleep compared to sleep when skin temperature was below that 

threshold (Raymann et al. 2008).  Together these findings support the notion that a sleep 

environment sufficient to warm skin temperatures to at least 33.5˚C (92.3˚F) is necessary for 

optimal sleep. 

 There appear to be sex differences in how temperature impacts sleep.  Baker and 

colleagues found that women taking contraceptives had significantly less REM sleep in an 

environment featuring a warm quilted blanket than on their baseline night with a lighter blanket, 

in contrast with men, who exhibited no detectable difference in sleep outcomes (Baker et al. 

1998).  Women taking contraceptives have also been shown to have higher body temperatures 

during sleep than naturally cycling women (Baker et al. 1998).  Additionally, progesterone, used 

in many oral contraceptives, has hypnotic properties that has been shown to increase non-REM 

sleep in both men and women (Baker et al. 1998; Friess et al. 1997).  These findings support the 

importance of having a flexible sleep environment that can be modified to meet the needs and 

preferences for both men and women. 

Air Quality 

 The air mixture on Earth at sea level is comprised of 78% nitrogen, 21% oxygen, and 1% 

various other gases (Encyclopædia Britannica).  Deviations from this typical gas mixture and 

altitude lead to a wide range of consequences depending on the relative changes in the gas 

composition and atmospheric pressure.  The presence of oxygen in the air mixture is required to 

sustain human life.  The OSHA guidelines state that the minimum acceptable breathing air 

should contain 19.5-23.5% oxygen (Occupational Safety & Health Administration), citing that 

hypoxia occurs below that level as evidenced by rapid breathing, increased heart rate and 

cognitive decline.  Although it is possible for a human to survive in air mixtures that include 
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higher levels of oxygen, toxicity can occur following prolonged exposure.  Exposure to 100% 

oxygen for as little as 10 minutes leads to changes in ventilation and respiratory rate (Crowley et 

al. 2012). 

 Exposure to elevated levels of carbon dioxide (CO2) can be lethal to humans.  The OSHA 

Permissible Exposure Limit (PEL) for carbon dioxide is 5,000 particles per million (ppm), or 

0.5% of the air mixture (Occupational Safety & Health Administration).  Exposure to lower 

levels of carbon dioxide has an influence on human cognition and breathing.  For example, 

exposure to carbon dioxide levels of 1,000 ppm for 2.5 hours is associated with moderately 

impaired decision-making, while exposure to 2,500 ppm is associated with large reductions in 

decision-making performance (Satish 2014).  Exposure to higher levels of CO2 leads to 

hyperventilation, hypercapnia and unconsciousness.  There have been several aviation accidents 

where passengers and crew aboard aircraft have been exposed to high levels of carbon dioxide 

(estimated exposures ranged from 4-38%) due to failures of fire extinguishers or dry ice (solid 

CO2), leading to near misses and fatalities (Rice 2014). 

 When barometric pressure is decreased, as occurs at altitude, the partial pressure of 

oxygen is reduced, which causes a reduction in the oxygen received with inspiration (Dietz 

2001).  Humans compensate for the reduced oxygen received at altitude by hyperventilating.  

Periodic breathing, when respiration cycles between apnea (no breathing) and accelerated 

breathing, occurs at altitude due to the lack of oxygen.  It is possible for humans to acclimatize to 

living at high altitude through frequent exposure to hypoxia (Muza et al. 2004). 

 At sea level, respiratory function follows a diurnal rhythm, with a peak in respiratory 

outcomes occurring during the day and a nadir occurring at night (Kerr 1973).  Some aspects of 

respiratory function, such as the hypercapnic ventilator response (HCVR) and end-tidal pCO2 

follow a circadian rhythm, with a minima occurring 6-8 hours prior to the minimum of the core 

body temperature minimum (Spengler et al. 2000).  There is a direct effect of non-REM sleep on 

respiratory function, including a sleep-induced increase in PaCO2, a decrease in HCVR slope and 

an increase in mechanical impedance between wakefulness and NREM sleep (Skatrud et al. 

1988). 

 Poor air quality or gaseous air mixtures that deviate from typical Earth-based sea level air 

mixtures are capable of causing sleep disruption and impaired breathing during sleep.  Exposure 

to elevated levels of CO2 can lead to sleep disruption.  Ventilatory responses to hypercapnia have 

been shown to be lower during sleep than during wake (Robin et al. 1958); (Lo et al. 2006) and a 

mean value of 3.8% (range 2.3-6.5%) end-tidal CO2 partial pressure has been shown to cause 

awakening from sleep (Gothe et al. 1981).  Similarly, there is a decreased respiratory response to 

CO2 exposure during sleep at both at 14,000 feet altitude and sea level compared to waking 

(Reed and Kellogg 1958).  The ventilatory response to exposure to CO2 is decreased following 

24 hours of sleep deprivation (Schiffman et al. 1983), but the interaction between sleep 

deprivation and air mixture has not been systematically studied. 

 Exposure to CO2 during sleep also influences daytime cognitive function.  Strøm-Tejsen 

and colleagues found a reduction in sleep quality following exposure to modest levels of CO2 

(Strøm‐Tejsen et al. 2015).  They randomized student volunteers to sleep for a night in their 

dormitory with airflow and to a night in their dormitory with no airflow.  They found that when 

individuals slept in bedrooms with airflow, the average CO2 was 660 ppm and when they slept in 

the room with no airflow, CO2 levels averaged 2,585 ppm.  In this study, sleep quality, and sleep 
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efficiency was reduced in the closed environment.  In addition, logical reasoning as measured by 

Baddeley’s test of grammatical reasoning was reduced after sleeping in the higher CO2 

concentration.  It is unclear whether these findings relate to the sleep disruption that participants 

experienced in the high CO2 condition, or to a direct effect of CO2. 

 Sleep disruption arising from variations in the ambient gas mixture is dependent on 

pressurization, as evidenced by studies simulating sleep and breathing at altitude.  Mizuno and 

colleagues studied sleep and respiration in five males in a hyperbaric simulator at sea level, 

1,500, 3,000, and 4,000 meters (Mizuno et al. 1993).  They found that arterial oxygen saturation 

significantly decreased with the increasing of altitude.  All participants experienced periodic 

breathing and developed apnea and/or hypopnea when sleeping at an altitude of 3,000 meters and 

above.  Hypoxemia occurred during sleep at 4,000 leading to arousal from sleep.  This change in 

sleep does not necessarily reflect disruption due to changes in the gas mixtures alone as 

individuals sleeping in hypobaric chambers with pressure equivalent to 3,500 m and CO2 less 

than 1% also experience altered sleep stages and arousals from sleep (Miller and Horvath 1977). 

 There appears to be an interaction between sleep at altitude and daytime symptoms of 

mountain sickness and headaches.  Miller and Horvath reported that sleep in a hyperbaric 

chamber resulted in severe headaches in some participants at 3,500 m of pressure (Miller and 

Horvath 1977).  In this study, headache symptoms were so intense for three out of eight study 

participants that after two days the researchers had to reduce the pressure in the chamber.  The 

authors hypothesize that this increase in headaches may relate to differences in periodic 

respiration that they observed between individuals during sleep. 

 Little research has been done on the impact exposure to other gas mixtures and air quality 

on sleep.  Helium has been shown to decrease muscle activity in most individuals during sleep 

(Skatrud et al. 1988).  Air pollution has not been shown to have a direct effect on sleep 

disruption in objective studies (Kerr 1973); however, a cross-sectional survey of university 

students demonstrated that poor air quality, cigarette smoke, and room scents were disruptive to 

sleep quality (Altun et al. 2012).  Air pollution may affect sleep via secondary effects, such as by 

leading to an increase in asthma, which can then lead to sleep disruption due to a circadian peak 

in asthma symptoms during the biological night.  Air pollution might also contain allergens, 

which are known to disrupt breathing and therefore sleep (Craig et al. 1998). 

 There is little research on the optimal velocity of airflow in the sleep environment.  Zhu 

and colleagues surveyed 1,055 Chinese citizens and found that 90% used a fan during sleep (Zhu 

et al. 2014).  They further found that individuals prefer constant to intermittent airflow and that 

their preferred airflow velocity while laying down is around 0.6 meters/second. 

Comfort 

 Comfort is dependent on a large number of variables, including temperature, spinal 

alignment, and mattress and pillow quality.  There are limited studies on how changes in each of 

these factors affects sleep quality and quantity. 

 The bedding system used has been shown to impact sleep quality.  Jacobson and 

colleagues found that a medium-firm mattress increased subjective sleep quality for normal, 

pain-free sleepers compared to 28 days of baseline in the individual’s own beds (Jacobson et al. 

2008).  In a follow up study of individuals with minor musculoskeletal sleep-related pain, the 

medium-firm mattress increased sleep quality and efficiency compared to a baseline period of 28 
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days in their own beds (average bed age = 9.5 years; Jacobson et al. 2009).  In another study 

using the same protocol, the same group compared the impact that the medium-firm had on sleep 

quality among individuals scoring both high and low in back pain (N = 59; women = 30; 

Jacobson et al. 2007).  Both groups reported improved sleep quality, lower levels of back pain, 

higher levels of sleep quality, and greater sleep efficiency compared to baseline sleep in their 

own beds. 

 There may be an interaction between the age of a mattress and body position on sleep 

quality.  Verhaert and colleagues designed a counterbalanced study comparing participant's sleep 

quality in a personalized stiffness distribution bed to a bed that simulated a sagging mattress 

(Verhaert et al. 2011).  When sleeping posture of participants was taken into account, two 

clusters of sleepers were found.  One cluster was of individuals who slept primarily in the lateral 

or supine position and the other were those who primarily slept in the prone or lateral position.  

Those who primarily slept in the lateral and prone position spent less time in REM and were 

awake a greater percentage of the night when sleeping in the sagging mattress compared to the 

personalized one.  However, no significant differences were found between the two mattresses 

for those who primarily slept in the lateral and supine position.  Similarly, Shen and colleagues 

found that beds with poor stability were related to increased body movement (Shen et al. 2012).  

Additionally, the firmness of a mattress might affect the amount of body surface area in contact 

with the mattress, but the resultant variation in insulation is minimal among conventional 

mattresses (McCullough et al. 1987).  These findings suggest highlight the importance of 

replacing bedding that has deteriorated or designing bedding with materials that will maintain a 

constant level of firmness suited to individual preferences. 

 In addition to the influence of mattress firmness on sleep quality, pillows have also been 

shown to play a role in maintaining spinal alignment.  Jeon and colleagues evaluated the impact 

of pillow choice on comfort (Jeon et al. 2014).  Participants (N = 20) laid in the supine position 

for 30 minutes with a feather, memory foam, and orthopedic pillow.  The cervical curve was 

found to be significantly greater with the orthopedic pillow.  The orthopedic pillow was more 

resistant to temperature increases than the feather and memory foam pillows.  Additionally, the 

orthopedic pillow was found to be more comfortable when compared to the other pillows.  

Gordon and Grimmer had participants compare their normal sleeping pillow to five trial pillows 

for one week each (Gordon and Grimmer-Somers 2011).  A relationship between reported poor 

sleep and uncomfortable pillows was found, as was the relationship between cervical stiffness 

and poor sleep.  Interestingly, evidence suggests that many participants used a pillow at home 

that was not well suited for them.  Feather pillows were associated with the lowest quality of 

sleep, while polyester and latex pillows were related to higher sleep quality.  In a separate study, 

Persson and Moritz randomly assigned one of six pillows to participants every night for three 

weeks (N = 55; Persson and Moritz 1998).  They found that the pillow that was firm and featured 

two supporting cores was the most preferred.  In that study, 65% of the participants found that 

the pillows improved upon sleep quality and 64% felt that the pillows lessened neck pain. 

 The attire that individuals choose for sleep also affects sleep quality.  Yao and colleagues 

explored the effect that fabric has on stratum corneum (i.e. outermost layer of skin) water content 

(SCWC; Yao et al. 2007).  Participants wore either pajamas that were 95% polyester and 5% 

spandex or 95% cotton and 5% spandex for three weeks before switching to the other pajamas 

for three weeks.  The sleep environment was maintained at 20˚C (±1˚C; 68˚F, ± 1.8˚F) and a 

relative humidity of 55% (±5%).  A subjective questionnaire addressing comfort and the 
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Pittsburgh Sleep Quality Index were used.  When participants wore the polyester pajamas they 

were more likely to feel cold at night, less likely to feel comfortable, and more likely to have 

elevated levels of SCWC. Sleep quality was positively related to reported coldness and comfort. 

SPACEFLIGHT ANALOG ENVIRONMENTS 

 Spaceflight analog environments serve an important function in the goal of human 

exploration and spaceflight.  These environments offer analogous insights into the hardships 

faced by astronauts in the harsh environment of space.  Analog environments for spaceflight 

offer terrain and elements that cannot be survived without special equipment, suits, care, 

collaboration, and technical expertise.  In a review conducted by Duke and Keaton, individuals 

isolated in analog spaceflight environments, reported symptoms often include boredom, 

restlessness, anxiety, sleep disturbances, somatic complaints, temporal and spatial disorientation, 

anger, and deficits in task performance over time (Duke and Keaton 1986). 

Polar Expeditions 

 There are currently more than 100 research stations in the Polar Regions.  Arctic and 

Antarctic expeditions involve living conditions that are similar to spaceflight.  Both Polar 

Regions feature a harsh environment with extreme temperatures and dryness as well as varying 

amounts of sunlight throughout the year.  The temperature and altitude experienced by those 

living in the Polar Regions varies depending on the time of year and geographic location.  For 

example, the mean temperature at the Palmer Station, latitude 64˚45'S, averages -7˚C (19.4˚F), in 

contrast to the South Pole Station, latitude 90˚S, which is much colder, averaging -52˚C (-61.6˚F; 

Palinkas et al. 2000).  Additionally, the altitude of stations varies widely from 5 to 3,350 meters 

(Palinkas et al. 2000).  The differences between the stations are linked to how often individuals 

are able to conduct expeditions outside the research stations.  Despite the large number of 

research stations in the Regions, there are few reports on the impact of the sleep environment on 

sleep quality, alertness and performance. 

 Polar stations typically accommodate a large number of individuals during the summer 

season, while fewer live at polar stations during the winter.  The individuals who overwinter in 

Antarctic are confined to small living quarters with limited private space for sleeping and 

personal activities.  On some bases, individuals may be assigned to sleep in a bunkroom until 

gaining enough seniority to be rewarded with a personal sleep space (Antarctic Support 

Associates). 

 Sleep disruption is a common problem during polar expeditions.  In one analysis of 

overwintering expeditioners in Antarctica, Palinkas found that 64.1% of the individuals reported 

sleep problems (Palinkas 1992).  In addition, during winter 62.1% felt depressed, 47.6% reported 

increased irritability, and 51.5% had trouble with concentration or memory (Palinkas 1992).  In a 

seven month long overwinter study in Antarctica, self-reported hostility and anxiety increased 

linearly over the winter, and anxiety increased as a function of total working hours reported 

(Evans et al. 1988).  Given the high prevalence of circadian desynchrony due to shiftwork 

operations and the polar light-dark cycle (Arendt 2012), it is difficult to distinguish what 

proportion of sleep disturbance relates to the habitability of the physical environment. 

 In a sample of overwintering expeditioners from 1963 to 1974, Palinkas and colleagues 

found that sleep disruption increased mood disturbance when the external environment was the 

most severe (Palinkas et al. 2000), suggesting that lack of access to the external environment 
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may contribute to sleep-related mood disturbance.  A study conducted by Weiss and colleagues 

demonstrates how the use of internal and external space may interact with sleep disturbance 

(Weiss et al. 2007).  These investigators evaluated how individuals used space on the French 

polar station of Dumont d’urville in Antarctica.  During this study, each expeditioner was 

assigned a private bedroom of approximately 9 m2.  The investigators found that the sleeping 

quarters and time spent outside the station were the only private spaces available to expeditioners 

and that individuals preferred to be alone approximately 30% of the time, but went outside the 

station less than 1% of the time during the harshest phase of winter.  Although they did not 

provide information on sleep outcomes, they noted that the bedrooms were not soundproofed.  

Similarly, Yan conducted daily surveys from three out of four expeditioners living at an arctic 

research station in Greenland and found that sufficient mitigations were in place to provide 

protection against external forces, such as noise from wind (Yan and England 2001).  However, 

there was insufficient insulation between the common area and adjoining sleep spaces, which led 

to noise from other expeditioners disrupting to sleep.  Of note, all four individuals at the 

Greenland base personalized their bedrooms through the addition of shelving for storage of 

personal items. 

 Hoffman summarized the qualitative experiences of four Antarctic explorers during a 

workshop panel (Hoffman 2002).  Three of the individuals provided their opinions about the 

habitability of the sleep environment during their overwinter deployment.  One individual stated 

that sleeping arrangements were based on seniority.  During the first winter at his base, he was 

assigned a sleeping cubicle in a shared sleep space, but after gaining seniority had a private room 

during the second winter.  This expeditioner suggested that crew quarters for spaceflight need 

not be spacious, but should be private and quiet.  This individual also reported that being able to 

personalize a space was important though this wasn’t apparent to him before the overwinter stay.  

Another expeditioner on the panel thought that 8-10 m3 of personal space would be adequate for 

a bedroom, but noted the optimal size would be dependent on size of crew and sizing of general 

use spaces.  This explorer also thought that cool temperatures in sleeping space of 5-10˚C (41-

50˚F) were acceptable, and that personalization of space was less important than noise reduction 

from common spaces.  Another expeditioner stated that personal space of 3 m2 with a privacy 

curtain was adequate for sleep and felt that controlling light was more important than noise.  The 

station where this expeditioner was deployed reportedly maintained cooler indoor temperatures 

(15˚C, 59˚F) and individuals wore sweaters, which helped minimize odors and the need for 

showering.  These reports highlight the individual differences in what factors are important for 

sleep for different people. 

 Although a majority of time spent in Polar Regions involves sleeping in a designated 

station, during polar fieldwork individuals will often have to spend time in polar field tent 

shelters (Figure 2).  In most cases individuals are issued a private tent for sleeping.  In addition to 

the tent, expeditioners at some bases are provided with a “sleep kit” including a thick sleeping 

bag, an ensolite pad, a fleece sleeping bag liner, a thermorest mattress, a pillow, warm fleece 

pants, and a bottle for nighttime urination (Brucker 2011; Koenig 2011).  Potter and colleagues 

surveyed expeditioners who slept in tents from 1-260 weeks in Antarctica and the Arctic region 

in order to determine how suitable such tents were for habitability (Potter et al. 1998).  The 

survey revealed that noise from wind was a persistent problem during sleep irrespective of the 

tent shelter that was used.  In addition, respondents reported that the tent fabric allowed too much 

light into the habitable area, which was particularly challenging during times of continuous sun 

exposure.  In this study, sleep problems were associated with increased reports of depression, 
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restlessness, and nervousness.  Of note, 51% of those surveyed reported that they personalized 

their tent space, which was associated with better satisfaction with the habitability of the tents.  

In a separate report, Yan and colleagues found that expeditioners felt it was it desirable to use 

their sleeping tents for private work and leisure, but 50-80% of those surveyed felt the tents were 

too small to do anything other than sleep (Yan et al. 1998). 

 Carrere and Evans evaluated behavioral activity and preferences in habitats at Palmer 

Station in Antarctica.  The percentage of a day spent sleeping decreased by almost two hours 

from the beginning of winter (41%) to the end of winter (33%; Carrere and Evans 1994).  The 

overwinter crew also chose to spend a large amount of time alone.  The researchers 

recommended that environments should be flexible and allow for varying personal and work-

related activities.  Customization of the station was important to the crew and was used to 

express personal and group character. 

 
Figure 2. Polar tents. Scott tent in yellow, sleeping tents in red. 

Source: http://earthobservatory.nasa.gov/ 

Underwater Environments 

 Underwater environments, like spaceflight, offer a constant source of danger from 

treacherous surroundings, which cannot be easily escaped.  Aquanauts, much like astronauts, 

have the looming threat of decompression sickness, or "the bends," when venturing outside of 

their protected environment (National Aeronautics and Space Administration 2001).  The key to 

survival rests upon technology, highly specialized skill sets, as well as communication and 

assistance from ground level support teams.  These environments also include the rewards of 

exploration and potential for human-kind advancement. 

SEALAB II 

 In 1965 the Navy conducted research with SEALAB II, operating at a depth of 205 feet 

(Radloff and Helmreich 1968).  Three undersea crews comprised of 10 individuals spent 15 days 

aboard SEALAB II, except for one individual who stayed for 30 days (Lang and Smith 2006; 

Radloff and Helmreich 1968).  The habitable space in SEALAB II was 37.9 ft3 (Stuster 1986). 

SEALAB II sat on the ocean floor with a 6-degree tilt.  The environment was warm at 29.4˚C 

(85˚F).  The air was helium rich, which modified the crew's voices and was reported to be 

distractingly amusing (the air mixture was ~78% helium).  There was a high level of humidity of 

60-90% due to the electric heaters.  Crewmembers experiencing sleep disruption due to 

http://earthobservatory.nasa.gov/
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environmental factors reported waking up simultaneously shivering and sweating.  Beyond sleep 

disturbances, aquanauts also experienced skin rashes, ear infections, and headaches, which they 

attributed to the high level of temperature and humidity, although accumulation of carbon 

dioxide and carbon monoxide may have contributed to these symptoms.  Due to the dense 

atmosphere aboard SEALAB II, greater effort was needed to breathe and was reportedly 

fatiguing.  There were no objective noise measurements conducted, but SEALAB II was 

subjectively described as very noisy, and at times when the Arawak pumps were active, 

communication became close to impossible. 

Tektite 

 The Tektite undersea habitat was a highly collaborative endeavor involving a number of 

industry, academic, and government bodies.  Tektite was a moveable habitat and was lowered to 

the ocean floor by a support ship (Figure 3).  The habitable environment featured a volume of 35 

ft3 (Stuster 1986).  The small amount of habitable space lead to complaints from crewmembers 

about a lack of working room (Stuster 1986).  Aquanauts stated that they would have appreciated 

a space for research, writing, and quiet reflection (Stuster 1986). 

Tektite I 

 In 1969 the Tektite I mission began with the undersea habitat lowered to a depth of 43 

feet.  Four aquanauts spent 60 days in a nitrogen-saturated environment.  The aquanauts sleep 

was measured with sleep logs, electroencephalogram (EEG), and electrooculogram (EOG) and 

was split into three groups (pre-dive, dive, and post-dive) to examine differences of sleep 

patterns from the period inhabited on Tektite to periods before and after (Naitoh et al. 1971).  

The Aquanauts slept for longer periods during their dive compared to both pre- and post-dive 

periods.  Three of the four aquanauts showed a significant shift towards later bedtimes and later 

wake times during the dive.  Sleep logs revealed that aquanauts felt that they achieved adequate 

sleep quality, however, some individuals noted that they felt sleep deprived during the mission.  

Notably, the Tektite I crew members experienced minimal intra-crew problems, but hostile 

attitudes were directed towards the topside crew (Miller et al. 1971). 

Tektite II 

 In 1970 Tektite II, operating at a depth of about 50 feet, had 10 missions that were 

between 14-30 days long and included five aquanauts in each mission (Willshire 1984).  The air 

mixture was 92% nitrogen 8% oxygen.  The relative humidity was between 45% and 55% with a 

temperature between 25.6˚C (78˚F) and 28.3˚C (83˚F).  During Tektite II the primary category of 

complaints from aquanauts related to habitability, in particular they felt there was inadequate 

privacy.  Personal space was limited to bunks, which aquanauts felt were too small in size.  

Aquanauts complained about having insomnia and sleep disruption during the mission.  They 

also felt there was too much noise, too much heat, boredom, no individual study space, 

objectionable odors, and inadequate selection of recreation equipment.  These negative 

experiences were associated with a dampening of aquanaut emotions as the mission progressed 

and led to a reduction in work and increase in sleep from the beginning to the end of the mission, 

with teams averaging between 7.4 and 9.4 hours of sleep per day (Willshire 1984).  Aquanauts 

who had higher levels of depression had more negative views towards both the habitat and the 

topside crew. 
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Figure 3. Tektite habitat. Source: http://history.arc.nasa.gov/Astrogram/astrogram_1970_7.pdf 

La Chalupa 

 The La Chalupa undersea habitat was used as a research laboratory for over 30 days.  

The undersea station was at a depth of 30ft and featured 55.63 m3 of habitable volume (Vander 

Ark et al. 1994).  The sleeping quarters included two suites and four bunks in total.  One 

crewmember left habitat early due to flu-like symptoms.  Although there were no reports of sleep 

outcomes during that mission, the crewmembers did report that they would have preferred 

private space to be alone in as well as more space for personal storage. 

NEEMO 

 NASA Extreme Environment Mission Operations (NEEMO) has conducted undersea 

habitat space analog studies in a cooperative project with the National Oceanic and Atmospheric 

Administration (NOAA).  This habitat, referred to as “Aquarius,” sits at a depth of 60 feet and is 

used as an analog for long-duration spaceflight (Todd and Reagan 2003).  Aquarius is 

approximately 15 meters by 4.5 meters (Reagan et al. 2012).  NEEMO missions tend to last 

between 10 and 14 days (Kanas et al. 2010).  The aquanauts engage in extra vehicular activities 

(EVAs), in the form of SCUBA excursions, with three primary tasks: building underwater 

structures, conducting marine science, and maintaining communication equipment (Todd and 

Reagan 2003).  Aquarius's environment includes high levels of humidity, typically around 75-

80% (Todd and Reagan 2003).  The ambient noise levels are reportedly low in Aquarius (Todd 

and Reagan 2003).  The floor plan for Aquarius' habitat is shown in Figure 4. 

 Kanas and colleagues studied NEEMO crews 12 & 13 and examined the differences 

associated with crew performance with varying levels of autonomy (Kanas et al. 2010).  When 

crews were provided with more autonomy, they reported lower levels of fatigue.  These findings 

support the fact that factors other than the habitable environment must also be considered in 

order to ensure crewmembers maintain appropriate levels of alertness and performance.  See 

Figure 5 for an Ocean view of Aquarius and Figure 6 for a view of the bunkroom. 

http://history.arc.nasa.gov/Astrogram/astrogram_1970_7.pdf
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Figure 4.  Aquarius' habitat layout. 

Source: http://www.nasa.gov/mission_pages/NEEMO/facilities.html 

 

 

 
Figure 5. NEEMO 12 Aquanaut in front of the Aquarius habitat.  Source: 

http://spaceflight.nasa.gov/gallery/images/behindthescenes/training/html/jsc2007e21796.html 

http://www.nasa.gov/mission_pages/NEEMO/facilities.html
http://spaceflight.nasa.gov/gallery/images/behindthescenes/training/html/jsc2007e21796.html
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Figure 6. Crew of NEEMO 5 laying in their bunks. 

Source: http://www.nasa.gov/missions/shuttle/neemo.html 

 

SPACEFLIGHT AND CONFINEMENT ANALOGS 

The Skylab Medical Experiments Altitude Test (SMEAT) 

 The Skylab Medical Experiment Altitude Test (SMEAT) was conducted to evaluate the 

mission schedule, events and hardware in order to make changes to improve the spaceflight 

Skylab missions.  The SMEAT lasted 56 days and included three crewmembers.  The habitable 

volume of the chamber was 20 feet in diameter and 20 feet high and included a bunkroom, where 

two crewmembers slept and a wardroom, where the commander slept.  Each bed included a 

pillow, blanket and sleep restraint to evaluate the comfort of the restraint for spaceflight.  The 

chamber was depressurized to between 4.85-5.15 psia at 70% oxygen for the duration of the 

mission (Johnston 1973).  The temperature was held between 19.4-25.6˚C (67-78˚F), with an air 

velocity of 15-30ft/min.  Crewmembers were instructed to go to bed at 22:00 and wake at 6:00 

each day of the experiment (Newkirk et al.).  One of the experiments planned for the spaceflight 

Skylab missions was a sleep experiment, which was also evaluated during SMEAT.  The 

investigators found several changes in sleep during the experiment relative to a baseline 

evaluation (Johnston 1973).  They found that sleep latency increased from ~20 minutes during 

the pre-mission evaluation to over 60 minutes during the SMEAT experiment, with sleep 

latencies ranging from 17 minutes to 197 minutes during the study.  This increase in sleep 

latency may have contributed to a reduction in the total sleep duration achieved by the 

crewmembers, who obtained an average of 6 hours and 26 minutes before the mission to 7 hours 

and 4 minutes during the mission and 5 hours and 6 minutes after the mission, despite their time 

in bed remaining the same.  Slow wave sleep was reduced during the SMEAT, but REM sleep 

remained unchanged.  The investigators reported that the pilot did not experience a change in 

sleep quantity or quality during the pre- or post-flight interval relative to during the mission. 

http://www.nasa.gov/missions/shuttle/neemo.html


 

29 

 The crewmembers participating in the SMEAT experiment provided regular ratings on 

the adequacy of the habitable environment (Johnston 1973).  The commander and pilot rated the 

sleep restraint and reported that it was adequate (both rating it ‘3’ on a scale from 1-5).  All three 

crewmembers rated the sleep environment during the mission and provided mixed opinions on 

the suitability of the sleep environment (Table 5), with one crewmember rating the stowage 

volume as near unacceptable.  The same crewmember rated the privacy curtain separating the 

crewmembers in the bunkroom as inadequate.  The crewmembers were asked to rate their 

experiences with noise, temperature and light, but due to confusion regarding the scales this data 

was not reported.  The crewmembers provided subjective reports on the habitability of the 

module and reported that noise from machinery was generally a problem that was amplified by 

the metal construction of the habitat.  The crew reported that this construction caused noise 

generated in any area of the habitat to be heard in every other area of the facility.  They also 

reported that the task lighting was not bright enough and that they would have preferred to have 

additional portable lights.  They reported that the accommodations were suitable for the mission 

and that the atmospheric composition was almost unnoticeable.  They stated that the temperature 

was comfortable, but that their feet got cold due to the metal floor.  They also reported that they 

felt much less comfortable during a four-day period when the temperature was increased to 25˚C 

(77˚F), with humidity at 60%. 

TABLE 5. SUBJECTIVE SCORING OF SMEAT DESIGN ISSUES 

Crew 
General 

rating 
Volume 

Ceiling/ 

Floor 

Proximity 

Ingress/

egress 
Trash 

Stowage 

volume 

and access 

Equipment 

restraints 

Mobility 

aids 

CDR 3 3 3 2 3 3 3 3 

PLT 3 3 2 2 2 2.5   

SPT 3.5 3.5 3.5 3.5 3.5 4   
Adapted from NASA TMX-58115, Skylab Medical Experiments Altitude Test. 

Note: 1 = Excellent, 5 = Unacceptable. 

Biosphere 2 

 Biosphere 2 was a closed ecological system, which was inhabited by four men and four 

women for two years (from 1991-1993), with the goal of obtaining a greater understanding of 

environmental issues.  The total enclosure for Biosphere 2 was 7,205,737 ft3 (Nelson et al. 1992).  

The total human habitat was 377,055 ft3 (Nelson et al. 1992).  Some of the stressors encountered 

during Biosphere 2 included: restricted calorie intake, low oxygen levels, interpersonal 

dynamics, media encounters and reports, and reliance on a novel life support system for food, 

air, and water (MacCallum and Poynter 1995).  According to the Biosphere 2 crewmembers, 

interpersonal conflict was the most significant problem (MacCallum and Poynter 1995).  

Additionally, the relationship between crewmembers and mission control members was 

perceived to be the most significant threat to safety and crew performance (MacCallum and 

Poynter 1995).  Biosphere 2 featured lower levels of oxygen (a nadir of 14%), which lead to 

hypoxia in several crew members and, consequently, symptoms of fatigue, sleeplessness, and 

shortness of breath (MacCallum and Poynter 1995).  Each crewmember had their own private 

room, which was found to be very important to all individuals. 
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Mars Analogs 

 Although missions in undersea and isolated environments provide a useful analog for 

spaceflight, such missions often differ in mission tempo, crew composition and size, and 

provisions available to crewmembers.  In order to better simulate the unique features of a deep 

space mission, Mars analog missions have been conducted. 

 The Institute of Biomedical Problems in Moscow Russia designed a habitat to simulate 

long-duration Mars missions (European Space Agency 2010).  Three studies were conducted in 

the facility, which lasted 15, 105 and 520 days, in order to test the feasibility of sending a 

similar-sized crew on a Mars mission in the future.  The total habitable volume of the facility 

was 550 m3.  Crewmembers each had individual crew quarters of 2.8-3.2 m2, which were 

equipped with a bed, desk, chair and shelves (Figure 7).  Each mission included six International, 

male crewmembers.  The crews rotated through a watch schedule, with one crewmember being 

required to stay awake throughout the time while the others were asleep. 

 The 105-day and 520-day missions both included sleep experiments, however, neither 

study provided information on the crewmembers subjective preferences related to the habitability 

of the sleep environment.  In the 105-day mission, crewmembers averaged around seven hours of 

sleep in the nights before the night shift, a two-hour nap on the day of the night shift and 

approximately 10 hours of sleep following the night shift.  During the watch rotations, 

crewmembers reportedly brought additional lights into the room where they were completing the 

night shift (Barger 2014).  These findings suggest that the crewmembers recognized the wake-

promoting benefits associated with exposure to light during the biological night, however, such 

self-selected light exposure may account for the non-24 hour sleep patterns observed among 

some crewmembers during the Mars 500 mission.  In that mission, not all of the crewmembers 

maintained a 24-hour schedule during the days that they were not scheduled to be on watch 

(Basner et al. 2013).  One crewmember followed a split-sleep schedule, taking regular naps and 

another crewmember exhibited a free-running circadian rhythm, presumably due to self-selected 

light exposure causing a progressive delay in sleep-circadian timing.  In addition to the varying 

sleep patterns that crewmembers experienced, they also experienced an increase in sleep duration 

from the beginning until the end of the study.  The investigators speculate that this increase in 

rest was a symptom of torpor arising from a long-duration confinement.  These findings 

highlight the importance of providing crew with private, sound attenuated quarters in order to 

facilitate self-selected sleep and changing sleep needs among crewmembers and also 

demonstrates that a regular light-dark cycle in common areas may be prudent in order to prevent 

circadian desynchrony between crewmembers. 
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Figure 7. Photograph of a bedroom used during the Mars simulation missions conducted by 

Institute of Biomedical Problems in Moscow Russia. 

Source: ESA_Mars_500infokit_31may2010 

Yuegong-1 

 Yuegong-1, or Lunar Palace 1, was an analog environment for a lunar base.  The 

Yuegong-1 environment featured two cabins, a “comprehensive” cabin (42 m2) for living and a 

plant cabin (58 m2; Wang and Wu 2015).  Crewmembers were provided with individual 

bedrooms which were narrow, but offered a bed and a small table (Wang and Wu 2015).  In 

examining changes in crewmembers over time in Yuegong-1, Wang and Wu evaluated an 80-day 

three-person mission by quarters.  Emotional states did not differ across mission quarters, 

however, fatigue was significantly more prevalent during the first quarter (Wang and Wu 2015). 

EXTREME ENVIRONMENTS 

Caves 

 The earliest studies on human circadian rhythms were conducted in caves, where 

individuals could be studied in the absence of time cues.  Most early studies conducted in caves 

included a small number of individuals or just one single individual (see Halberg et al. 1970). 

 Halberg and colleagues studied two individuals, in two separate caves without access to 

external light, noise or time cues, over 85 and 125 days.  The relative humidity was 

approximately 100% and the temperature ranged from 4˚C (39.2˚F) to 8˚C (46.4˚F).  The 

participants slept in a tent, which sheltered a bed with supplies similar to those used during a 

camping trip (e.g. butane stove, canned food, tools, etc).  Heaters were used to warm the tent 
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prior to sleep and were extinguished prior to retiring.  Temperatures would reach around 21˚C 

(69.8˚F) before falling back to the caves' baseline temperature range throughout the subject's 

sleep period.  A gas lamp was provided to each participant, which provided 50 lux of light.  

Participants also carried a lantern outside their tent that was reportedly low powered.  Both 

participants, experienced free-running circadian rhythms, presumably due to self-selected light 

exposure and no external lighting cues.  There was no specific information reported related to the 

cave environment on sleep quality.  Of note, participants in the study felt that time passed more 

slowly than in reality, with one participant who felt the calendar was approximately one month 

earlier.  Similar findings were reported in cave studies conducted by Kleitman (Kleitman 1965), 

and Siffre (Siffre 1988).  These findings highlight the importance of maintaining a regular light-

dark cycle of sufficient intensity to maintain normal circadian entrainment.  

Mountaineering 

 Mountain climbers frequently experience awakenings and poor sleep quality during 

expeditions. 

 The majority of studies that have been conducted comparing sleep outcomes in 

individuals sleeping at sea level compared to those sleeping at altitude have found that sleep 

duration is not affected by sleep at altitude, but sleep is more disrupted compared to sleep at sea 

level (Reite et al. 1975; Salvaggio et al. 1998; Selvamurthy et al. 1986).  Szymczak and 

colleagues studied 32 individuals (28 male, 4 female) over two expeditions in Nepal, Himalayas.  

Subjective sleep quality and sleep timing was measured at both sea-level and at a high altitude 

(M = 4524 meters above sea-level; Szymczak et al. 2009).  Participants displayed a decrease in 

both sleep quality and sleep onset during the high altitude measurements.  Participants also 

reported sleep disturbances due to awakenings, temperature-related discomfort, and breathing 

difficulties.  Sleep duration was not different at altitude relative to sea level. 

 The impact of sleeping at altitude on sleep stages is unclear.  Comparisons of sleep 

between high altitude natives to acclimatized lowlanders and unacclimated lowlanders sleeping 

at 3500 m showed that all three groups had significantly less SWS compared to unacclimated 

lowlanders at sea level (Selvamurthy et al. 1986).  In contrast, another group reported a non-

significant trend towards increased SWS among unacclimatized lowlanders over four weeks at 

an altitude of 5050 meters (Salvaggio et al. 1998).  It is possible that the variation in sleep stage 

disruption observed among individuals at altitude relates to susceptibility to mountain sickness.  

Selvamurthy and colleagues found that acute mountain sickness was prominent among 

unacclimated lowlanders who did not experience a reduction in SWS while at altitude 

(Selvamurthy et al. 1986).  It remains unclear whether physiological disturbances (e.g. 

headaches, mountain sickness) account for some proportion of the sleep disturbance or whether 

the sleep disturbance results from a direct effect of atmospheric pressure. 

 Oxygen enrichment may be a countermeasure for improving sleep at altitude.  A study 

investigating oxygen enrichment at altitude showed that it leads to increased deep sleep and 

fewer apneas (Luks et al. 1998), but no change in sleep duration for sea-level acclimated 

individuals (Barash et al. 2001). 

Aircraft 

 The standards for crew rest facilities in commercial aviation vary based on the length of a 

flight and the number of pilots operating the flight.  There are three classes of rest facilities, with 
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Class 1 facilities allowing for the longest flight duty time (19 hours with four crewmembers; 

Federal Aviation Administration 2011).  A Class I facility means a bunk or other surface that lies 

flat and is separated from both flight deck and passenger areas.  It must allow crewmembers to 

control light and temperature and provide isolation from noise and disturbance.  Some control of 

communications is also recommended to minimize disturbances to rest periods.  The volume for 

the facility should be 35 ft3 per individual user with additional adjacent free space for access and 

changing of clothes (Federal Aviation Administration 2012).  The dimensions for each sleeping 

surface should be 78x30 inches (SAE International 2006).  A Class II facility is a seat in an 

aircraft cabin that allows for a flat or near flat sleeping position that is separated from passengers 

by minimum of a curtain to provide darkness and some sound mitigation.  It should be 

“reasonably free from disturbance” and could be a group of seats shared only by flight crew.  

Specifications for the seat are that it should recline to at least 45˚ and have a seat width of 20” 

with leg and foot support.  This could be considered as a ‘normal’ business class seat in a 

commercial aircraft.  This type of crew rest facility allows for an18 hour flight with four 

crewmembers.  A Class III facility is a seat in an aircraft cabin or flight deck that reclines at least 

40˚ with leg and foot support.  This type of crew rest facility allows for a 15.5-hour flight with 

four crewmembers.  The regulations also state that ‘intrusive noise, odors and vibration’ should 

be minimized.  Controls of airflow and temperature provide for a well-ventilated space (Federal 

Aviation Administration 2011).  Noise level during cruise is suggested to remain in the range of 

70-75 dBA (SAE International 2006). 

 The International Federation for Airline Pilots Association (IFALPA) published a 

position paper that included additional recommendations for crew rest facilities based on the 

pilot perspective on what features would be important for crew rest (International Federation of 

Air Line Pilots’ Associations 2013).  These recommendations included that rest facilities should 

be in proximity to the cockpit in case of emergency response situations.  They also recommended 

that the facilities be convenient to the lavatory.  They also recommends that at least 39” (1000 

mm) of unencumbered space should be provided above a bunk sleeping surface for ease of use, 

and that sleeping surfaces should provide support and resilience such as to avoid complete 

compression at pressure points (shoulders, hips) with thickness of 100 mm.  Importantly, the 

position paper highlights the importance of minimizing intermittent noise and recommends that 

random noise disturbances should be minimized, so that they differ from background noise by 

only 3-5 dBA.  IFALPA also recommends airflow volume of 0.7 cubic meters per minute per 

occupant (minimum of 0.3) to ensure a uniformly ventilated rest facility.  The velocity of air 

passing over sleeping surfaces is recommended to not exceed 12 meters/minute and relative 

humidity should be at an equivalent level as to the cockpit.  IFALPA also notes that guidance 

exists for vibration levels of low frequency z-axis oscillations to manage motion sickness 

potential. 

 The majority of studies conducted to examine the quality and quantity of sleep on an 

airplane to that on the ground support the notion that sleep is better on the ground relative to in 

an aircraft.  Sletten and colleagues studied the impact of sleeping in on-board rest facilities 

during flight to sleep at home among 71 commercial airline pilots.  They found that sleep 

efficiency was significantly lower (~69%) compared to sleep at home (~82%).  They also found 

that activity during sleep was significantly higher and sleep quality was rated as significantly 

worse during sleep on an airplane compared to sleep at home (Sletten et al. 2002). 
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 There have only been a small number of studies that have compared the quality and 

quantity of crew rest during flight in different sleep locations (e.g. in a bunk, in a seat).  

Researchers at NASA surveyed 1,404 long-haul pilots from three US commercial carriers in 

order to determine what factors were associated with sleep disruption during flight.  Factors that 

promoted sleep in the bunk were physiological (readiness for sleep), physical environment (bunk 

size, privacy), and personal comfort (blankets, pillows).  Factors that interfered with bunk sleep 

were environmental disturbances such as background noise, and turbulence, lighting, personal 

disturbances, the need to use the bathroom, random thoughts, environmental discomfort, 

including low humidity and cold, and interpersonal disturbances including other crewmembers 

using the crew rest facility.  Respondents suggested that the bunks could be improved through 

larger and thicker mattresses, cloth sheets and pillowcases, and bigger pillows and blankets 

(Rosekind et al. 2000).  In a separate study, researchers at NASA conducted a field study of in-

flight sleep quantity and quality with 38 long-haul pilots.  Different bunk configurations existed 

in the aircraft types that were studied with a permanent bunk facility with an upper and lower 

bunk located just aft of the cockpit (B747), and a convertible semi-permanent facility located 

between the business and economy class cabins (B767).  Two 747 flight crew used the facility at 

a time, while the 767 pilots used the facility one at a time.  A pillow and wool blankets were 

available in all facilities.  Differing schedules led to longer and shorter bunk periods in the 

different aircraft averaging 258 and 108 min.  There were no specific differences in sleep 

outcomes reported between the two bunk spaces.  Total sleep time, measured by 

polysomnography, averaged 155 and 70 min, respectively, with similar sleep efficiencies in both 

bunks of 78% and 84%.  Slow wave sleep averaged about 11% of sleep in the longer bunk sleep, 

likely due to the longer sleep opportunity.  REM sleep was measured in over half of all bunk 

sleeps (Rosekind et al. 1997). 

 Two studies have been conducted that directly compare specific sleep configurations 

relative to sleep outcomes.  Spencer and Robertson compared sleep by flight crew in a bunk to a 

third seat on the flight deck.  Most pilots were able to sleep in the bunk (82%), while only about 

2 in 3 did so in the seat (65%).  Sleep quantity (1.2 vs 0.6 h) and quality (4.5 vs 5.4 with 7= 

‘extremely poor’) was better in the bunk than in the seat.  The seat was reported to be 

uncomfortable and leg support was poor while complaints about the bunk included a hard 

mattress and inadequate bedding (Spencer and Robertson 2000).  Nicholson and colleagues 

compared the sleep of nine men in bed, in a ‘sleeperette’ (49.5˚ recline to the vertical; ‘first class 

seat’), in a reclining seat (37˚ recline; ‘business class seat’), and an armchair (17.5˚ recline; 

‘economy class’).  They found that sleep in the sleeperette did not significantly differ from sleep 

in a bed (total sleep time= 425vs 437 min, sleep efficiency= 89% vs. 90%).  They found that 

individuals slept less (406 min) and had more awakenings in the reclining seat, while sleep in the 

armchair was the worst.  The authors concluded that better sleep was related to a back angle 

approaching 40˚ or more to vertical (Nicholson and Stone 1987). 

Military 

 Service members from all branches of the military experience sleeping in isolated, 

confined and hostile environments during deployment.  Each branch of military has established 

separate requirements for berthing areas and mission-related sleeping environments.  Few studies 

have been conducted to evaluate the impact of the various sleep environments on sleep quality, 

alertness, and performance. 
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 Army service members experience a wide array of sleep environments, including sleep in 

locations that were not designed for sleep, such as in army vehicles and in temporary 

encampments.  In addition to lacking basic features to allow for sleep (e.g. bedding), such 

environments often feature extreme temperatures, varying light exposure and poor air quality.  

For example, Goldman and colleagues reported that the temperature inside combat vehicles 

ranges from 26.7-35˚C (80-95˚F), leading to the potential for sleep disruption and heat stress 

(Goldman 1982).  In a collection of interviews compiled by Ritchie and Small, tank 

crewmembers at the National Training Center reported that they rarely slept inside armored 

vehicles due to excessive temperature (Ritchie and Small 1987), poor airflow and physical 

discomfort due to lack of space to stretch out.  Instead, they reported that they would take a foam 

pad and sleeping bag stowed within the vehicle and sleep on top of the vehicle. 

 In the Army Combat and Operation Stress Control Manual for Leaders and Soldiers, the 

recommended sleep environment includes control over ambient noise, with provision of earplugs 

or white noise to block ambient sounds, a dark environment, with provision of an eye mask for 

sleep locations that cannot be completely darkened, and provision of extra clothing and blankets 

for cold environments and fans for hot environments to maintain a suitable sleep temperature 

(Department of the Army 2009).  The manual also provides recommendations on optimal 

schedule design and use of caffeine and hypnotics.  It is unclear, however, to what extent the 

recommendations outlined in the manual are deployed in operational scenarios.  For example, 

when on patrol, army service members are issued a sleeping bag that may be used at temporary 

encampments.  This sleeping bag is described as "lightweight, designed for temperatures in the 

range 30-50˚F with dimensions of 90x36."  An adjustable hood helps keep warmth in or bugs out 

and a reversible zipper allows for top or bottom ventilation.  A draft flap is designed to prevent 

heat loss and a draw cord on the hood allows for adjustments and control for heat retention (Best 

Glide), however, there are no reports on how sleep quality is affected by using the sleeping bag.  

Similarly, according to an Army Sergeant who was deployed to Iraq, the tent that served as 

sleeping quarters were right next to noisy diesel generators and that 20 personnel were bunked 

there, with the lights always on and personnel regularly coming and going due to different work 

schedules (Green 2015). 

 Military aviators experience unique challenges and are frequently required to sleep on 

aircraft or in temporary sleep locations.  Work hour guidelines for tanker transport allow for a 

flight duty period of 24 hours, provided the aircraft has a rest facility and augmented crew.  

Guidance on rest facilities on military aircraft is generally lacking, with requirements stating that 

“rest facilities should provide adequate privacy and noise levels to obtain suitable rest.” (Wolters 

2015).  Similarly, Air Force procedures for U-2 flight operations note that crew rest facilities 

should be “climatically controlled, quiet” and easily accessible.  At deployed locations, 

inspection by command personnel determine compliance with requirements for sleep spaces 

(Department of The Air Force 2000). 

 Caldwell and colleagues surveyed 241 Army aviators and 120 enlisted crewmembers and 

found sleep rated as poor by 26% of aviators and 36% of crewmembers while deployed 

(Caldwell et al. 2000).  Respondents indicated that sleeping quarters were perceived as 

inadequate; with day and night crews sharing the same tent facilities, which were often located 

near areas where noise from aircraft and personnel working interfered with sleep.  They also 

reported that daylight was poorly controlled, also disrupting sleep and that crew-rest policies 

were not followed as closely during a mission as when at home base.  In contrast, in a report to 
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the Air War College, Watt described experiences with pilot fatigue during deployment in Middle 

East operations.  Crew rest quarters were located in a trailer-like facility with private air-

conditioned rooms (Watt 2009).  Air conditioners were effective for white noise and windows 

were blacked out, doors padded, and hallways rugged as much as possible to minimize noise (i.e. 

boots walking).  Private rooms were deemed necessary to minimize disturbances from a 

roommate on a different schedule entering or exiting the room (scheduling was a significant 

challenge in this operation).  Restrooms were located in a separate building, which posed a 

challenge for daytime sleepers due to the need to exit sleeping quarters and enter a bright 

environment.  Given the need to drink a large volume of water due to outdoor temperatures 

typically exceeding 100˚F, crew often resorted to use of disposable “aircrew relief devices” 

instead. 

 The Manual of Naval Preventive Medicine provides guidance on the sanitary 

requirements for berthing areas on ships and barges, mandating that berthing spaces be clean, 

well ventilated, and well illuminated (Bureau of Medicine and Surgery 1995).  There is no 

provision for private sleep spaces within berthing areas and the size and privacy of sleeping 

quarters are based on rank, with E 1 recruits being allotted 72 square feet of living area in an 

open bay, with a central bathroom.  The guidelines provide specific requirements for pillows and 

mattresses in order to reduce fire hazards and require that a supply of clean linen be available.  

During periods of work, the Navy Occupational Exposure Limit for noise is 84 dBA, time-

weighted over an 8 hour day (Department of the Navy 2002).  The noise limit in Naval berthing 

areas is currently 70 dBA (Department of the Navy 1995).  These recommendations are 

substantially higher than the American Bureau of Shipping (ABS) Guide for Crew Habitability 

on Ships, which recommends noise levels in berthing areas not exceed 50 dBA (American 

Bureau of Shipping 2001).  The ABS further recommends that the relative humidity be 

controlled to between 30% and 70% with an ambient air temperature between 18-26.5˚C (64.4-

79.7˚F).  They state that the air velocity should not exceed 0.5 m/s and the amount of lighting 

during periods of sleep is recommended to not exceed 30 lux(American Bureau of Shipping 

2001).  Early reports on the habitability of the sleep environment on Navy ships found that 

service members reported sleep disruption due to noise, inadequate climate control, 

overcrowding, and uncomfortable bunks (U.S. Navy Atlantic Fleet Inspector General 1969).  In 

addition to habitability concerns present within the local sleep environment, factors associated 

with ship movement and working location have been shown to reduce sleep quality and duration.  

Rough seas have been identified as a major source of sleep disruption during Navy operations.  

In response to rough seas, crewmembers aboard ships may experience motion sickness and 

sopite syndrome, which symptoms include drowsiness, lethargy, mild depression, and difficulty 

focusing (Matsangas et al. 2015).  Matsangas and colleagues studied the impact of rough seas on 

sleep and found that as sea conditions worsened, sailors slept significantly longer hours 

(Matsangas et al. 2015). 

 The location of work aboard a ship influences the amount of sunlight that workers are 

exposed to and can affect sleep quality and duration.  Miller and Nguyen conducted a study 

evaluating the impact of exposure to natural light on sleep (Miller and Nguyen 2003).  They 

studied two aircraft carriers that were working in-tandem to create round-the-clock operational 

abilities, with one carrier conducting missions at night and the other during the day, in aid of 

Operation Enduring Freedom.  They found significant differences in amount of sleep that 

individuals achieved between the two carriers.  In particular, those who worked topside (i.e. on 

or above the deck) of the carrier and were exposed to sunlight immediately prior to sleeping 
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obtained 4.72 hours of sleep per day, while those who worked below deck, and experienced very 

little sun exposure, obtained 7.35 hours of sleep per day.  These findings support the notion that 

exposure to bright light at inappropriate times of day relative to shift schedules can reduce sleep 

duration. 

 Work on submarines poses numerous habitability challenges, including lack of daily light 

exposure and limited space for living and working.  In response to the space constraints present 

on most submarines, "hot bunking" was a common practice in the past.  Hot bunking entails the 

shared use of a bed by two or three individuals during shiftwork operations, whereby one 

individual occupies the bed while the others are working and the sleep space is rotated between 

the occupants by shift.  "Hot bunking" has generally been abandoned due to the fact that it limits 

privacy among crew members and creates problems related to personal space and hygiene 

(Stuster 1986). 

 Strategic use of lighting improves sleep outcomes during submarine operations by 

promoting circadian alignment in the absence of a natural light-dark cycle.  Submariners in the 

US Navy have historically worked 18-hour days, with six hours on duty and 12 hours off 

(Duplessis et al. 2007).  Young and colleagues conducted a study comparing florescent lighting 

to high correlated color temperature (CCT) florescent light sources in patrolling submariners 

working on a 24-h schedule (Young et al. 2015).  The use of high CCT light sources during 

periods of duty was related to better behavioral alignment with a 24-hour rhythm with 

convergent validity of a wide variety of objective and subjective measures. 

THE SPACEFLIGHT SLEEP ENVIRONMENT 

Vostok 

 Vostok was a spherical space vehicle for one individual with a habitable volume of 

between 2-3 m3 (Wieland 1994).  Vostok's air mixture was similar to that of sea-level with a 

O2/N2 mixture and had a 14.7 psia (pounds per square inch absolute) atmosphere (Wieland 

1994).  The internal cosmonaut controlled temperature ranged from 12-25˚C (53.6-77˚F) with a 

relative humidity ranging from 30-70% (Wieland 1994).  In 1961, Yuri Gagarin flew in Vostok 

1, the first ever spaceflight vehicle for humans, completing one complete orbit around the world.  

On Vostok 2, the first person fell asleep during space, Gherman Titov.  In total, there were six 

manned Vostok flights (Wieland 1994). 

Mercury 

 Mercury was the first space vehicle for the United States that completed an orbit around 

Earth.  Mercury had a habitable volume of 1.02 m3 (National Aeronautics and Space 

Administration 1991).  The air mixture composition was 100% O2 with 5 psia (Daues 2006).  

Temperature was recorded on the Mercury-Atlas 7 mission and ranged from 27.8-42.2˚C (82-

108˚F; White and Berry). 

Voskhod 

 The Voskhod space capsule was used for two spaceflight missions in 1964 and 1965 (US 

Congress 1983).  Voskhod had a habitable volume of around 2-3 m3 (Wieland 1994).  Like 

Vostok, Voskhod had a cosmonaut controlled temperature ranging from 12-25˚C (53.6-77˚F) and 

Voskhod 1 flew with three cosmonauts and Voskhod 2 flew with two cosmonauts.  Voskhod's 

habitable volume, which was comparatively sized to Vostok, was increased due to the fact that 

the cosmonauts did not wear large space suits and instead wore overalls.  Additionally, the 
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ejection seats and railing were taken out (US Congress 1983).  This was primarily done to fit 

more than one cosmonaut on a mission (Wieland 1994). 

Gemini 

 There were no considerations given to the quality of the sleep environment during the 

Gemini missions.  Gemini had a total habitable volume of 2.55 m3 (Cohen 2008).  The 

atmosphere composition was 100% O2 (Daues 2006).  In general, the astronauts for each of the 

Gemini missions rested in place, as there was only a single habitable zone in the capsule.  The 

Gemini missions highlighted the need for improving the astronaut sleep environment.  The 

Gemini astronauts primarily complained of noise pollution during their sleep opportunities; 

specifically that radio noise and automatic thruster firing woke them (Hacker and Grimwood 

1977).  On Gemini IX, the astronauts complained about lights from the cabin disrupting their 

sleep and on Gemini X, the astronauts reported having difficulty sleeping due to a strange odor, 

which emanated from their suit fans (Hacker and Grimwood 1977).  After they turned one fan 

off, the smell was tolerable. 

 The interaction between crew schedules and sleep habitability was also an issue.  On 

Gemini IV, the astronauts were supposed to sleep in four-hour shifts, with one crewmember 

sleeping while the other was awake (Hacker and Grimwood 1977).  This did not work, because 

ground control kept in frequent communication with the astronaut who was awake, which woke 

the sleeping astronaut.  A similar problem was apparent on Gemini V, but given the severity of 

the astronaut’s sleep disruption due to the poor sleeping environment, the astronauts worked with 

mission control to change their schedule and allow them to sleep at the same time.  This resulted 

in each astronaut experiencing a longer, more consolidated sleep (Hacker and Grimwood 1977).  

The Gemini VI astronauts were aware of the difficulty experienced by astronauts sleeping in 

shifts on prior missions.  The Mission Director for Gemini VI allowed the astronauts to abandon 

a formal timeline and instead provided the astronauts with an outline of tasks.  This allowed the 

astronauts to follow a 24-hour pattern, maintaining their sleep during the night (Central Standard 

Time) and their work activities during the day (Hacker and Grimwood 1977).  Although the 

astronauts reported improved sleep when they were both able to sleep at the same time, the 

missions required that one astronaut remain in his flight suit at all times.  The flight suit was not 

designed for sleeping and the astronauts complained that it was too hot.  On Gemini VI, this led 

to one astronaut having continually disrupted sleep due to overheating. 

 Despite the well-documented issues associated with astronauts sleeping in shifts in a 

confined space, mission planners for Gemini VIII recommended that the astronauts return to 

sleeping in shifts (Hacker and Grimwood 1977).  The astronauts protested this recommendation, 

but it was denied by mission managers and the astronauts were scheduled to sleep at offset times.  

This highlights the need for objective data collection regarding the impact of operational 

decisions based on prior missions. 

 The functional consequences of the astronauts' accumulated sleep loss due to poor 

habitability, poor scheduling and high workload were realized on Gemini X, when one astronaut 

fell asleep during an EVA and floated asleep on the tether, while the other astronaut 

simultaneously fell asleep inside the capsule (Hacker and Grimwood 1977). 
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Soyuz 

 Soyuz has played an integral part in spaceflight history, dating back to 1967.  Soyuz, 

however, has gone through various modifications through the years.  After 12 years of Soyuz 

operations, a new design, Soyuz T, made its inaugural flight in 1979 (US Congress 1983).  The 

Soyuz T had a habitable volume of approximately 10 m3 (US Congress 1983).  A modified 

version of the Soyuz T can be seen in Figure 8.  The newest model is the Soyuz TMA.  The 

Soyuz TMA's Orbital Module and its Descent Module have a habitable volume of 6.51 m3 and 

3.99 m3, respectively (Wright 2010).  The atmosphere composition is similar to sea-level and has 

a psia that ranges between 13.7-16.4 (Daues 2006).  Like earlier Soviet capsules, Soyuz has a 

cosmonaut/astronaut controlled ambient temperature ranging from 12-25˚C (53.6-77˚F) with a 

relative humidity range of 30-70% (Wieland 1994). 

 Prior to Soyuz 11, cosmonauts did not wear pressurized suits.  However an accident due 

to a pressure valve failure resulted in the introduction of space suits on Soyuz missions (Wieland 

1994). 

 
Figure 8. Diagram of Soyuz-TM. 

Source: http://history.nasa.gov/SP-4225/diagrams/mir/mir-diagram-11.htm 

Apollo 

 The Apollo missions are unique relative to all other NASA spaceflight missions to date.  

These missions involved three crewmembers, including two pilots and a mission commander.  

The Apollo missions are important to consider when evaluating habitability, because the Apollo 

missions involved two habitability chambers - the Command Module (CM) and the Lunar 

http://history.nasa.gov/SP-4225/diagrams/mir/mir-diagram-11.htm
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Module (LM).  This design most similarly mimics the type of arrangement that may be employed 

during future missions to the Moon, Mars or an asteroid, where astronauts will experience both 

microgravity and partial gravity. 

 The CM and LM environments were distinct from each other and included very different 

features.  The CM remained in orbit around the moon, with the CM pilot on board, while the LM 

landed on the moon carrying the Mission Commander and the LM pilot.  The CM had a 

habitable volume of 5.95 m3 and the LM had a habitable volume of 4.5 m3 (National Aeronautics 

and Space Administration 1991).  The habitable volume for the CM and LM can be seen in 

Figure 9.  After Apollo 1, the atmosphere composition inside the vehicle during launch was 

changed from 100% O2 to 60% O2 and 40% N2 with 5 psia (Daues 2006).  Post launch, the 

Command Module and the Lunar Module had an atmosphere composition of 100% O2 with 5 

psia (Daues 2006).  The nominal temperature range for Apollo missions was 21-24˚C (70-80˚F) 

with a relative humidity of 40-70% (Wieland 1994).  However, much more variability actually 

occurred during missions.  From Apollo 7 to Apollo 17, the Command Module cabin 

temperature averaged 17.2-22.8˚C (63-73˚F) with a recorded low of 6.1˚C (43˚F; excluding 

Apollo 13, the low was 12.8˚C or 55˚F) and a high of 27.2˚C (81˚F; Hawkins and Ziegleschmid 

1975). 

 There was little attention given to the sleep environment during Apollo 11, but sleeping 

conditions were incrementally improved for subsequent missions following feedback from 

astronauts.  The Apollo Command Module's sleep restraints can be seen in Figure 10. 

Apollo 11 

 On Apollo 11, there was no separate chamber for sleep in either the CM or the LM 

(National Aeronautics and Space Administration 1971).  In the CM, the astronauts slept side-by-

side and did not report any major issues with sleep; however, they did report some anxiety about 

entering a gimbal lock during sleep, which may have led to sleep fragmentation.  Despite this 

anxiety, according to the Apollo 11 Mission Report, the astronauts averaged 8 hours of sleep a 

night without using sleep medications. 

 In the LM, there was no attention given to the sleep environment.  The Commander slept 

on the ascent engine cover and the LM pilot slept in place (National Aeronautics and Space 

Administration 1971).  Although these sleep locations would be awkward in full gravity, the 

astronauts reported that the partial gravity environment made these unconventional sleep 

locations acceptable for sleep.  The astronauts were instructed to keep their flight suits on at all 

times, including their gloves and helmets due to anxiety about a potential loss of cabin pressure.  

The astronauts reported that they were too cold due to the cooling systems in the flight suits.  

This cold temperature led to sleep fragmentation.  When they turned off the cooling system, the 

environmental control system in the LM was insufficient to heat them to a comfortable 

temperature.  Noise was also a significant issue during the Lunar sortie.  The astronauts reported 

that a sporadic, high-pitched noise from the glycol pumps woke them frequently.  Light pollution 

was also a major issue on board the LM.  The window shades did not completely close, there was 

light from display and warning lights and light shined through the telescope directly into the 

astronauts' sleep space.  The LM sleep environment can be seen in Figure 11. 
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Apollo 12 

 Mission planners obtained feedback from the Apollo 11 crew and made modifications to 

aid in improving sleep hygiene for the astronauts on Apollo 12 (National Aeronautics and Space 

Administration 1971).  The primary modification was the addition of sleeping hammocks and 

blankets on the LM.  The astronauts in the LM were required to sleep in their flight suits, which 

they found uncomfortable.  They did not use the garment cooling system during sleep, which 

allowed for a more comfortable sleeping temperature.  As in the Apollo 11 mission, the 

astronauts complained of noise disruption during sleep episodes due to the glycol pump.  The 

mission engineers were unable to replicate the source of the sound on Earth, highlighting the 

need for thorough testing of noise levels generated by equipment on Earth and in space.  The 

crew was required to shift their sleep 7-9 hours from their Earth-based sleep timing, which may 

have contributed to their difficulty sleeping on the Moon.  In order to counteract the effects of 

the poor sleep environment and misaligned schedule, the Lunar pilot took sleep medication 

during every night of the mission, however, he was still only able to obtain ~3 hours of sleep per 

night. 

Apollo 13 

 This mission was aborted due to a fire in one of the oxygen tanks at 56 hours into the 

mission (National Aeronautics and Space Administration 1970).  During the first two days of the 

mission, the crewmembers reported sleeping well in the CM.  After the incident the CM 

temperature dropped to approximately 55˚F and the astronauts were only able to obtain 

fragmented sleep until they landed at approximately 143 hours into the mission.  They also 

reported intermittent noise that disrupted their sleep emanating from the glycol pump as in prior 

missions.  Similarly, they reported that frequent communication with Flight Controllers disrupted 

their sleep. 

Apollo 14 

 The sleep environment on the CM and the LM for the Apollo 14 mission was similar to 

that in the Apollo 12 mission, where the astronauts had hammocks available for sleep in the LM 

(Shepard Jr 1972).  The LM landed on an uneven surface and settled at a 7-degree tilt for the 

duration of the mission.  This reportedly caused the astronauts a great deal of discomfort and 

anxiety.  One astronaut reported frequently looking out the window to make sure that the module 

was not going to tip over.  The astronauts on the LM reported experiencing significantly more 

sleep disruption and pain than on prior missions, however it is unclear whether that was due to an 

uncomfortable sleep environment or to the near inversion of their sleep schedule. 

Apollo 15 

 Mission planners made several changes to the sleep environment on the Apollo 15 

mission.  As in the Apollo missions after Apollo 11, the crew slept in hammocks, but they 

reported that the hammocks should be larger for future missions.  Unlike prior missions, the crew 

was not required to wear their flight suits and instead were provided with a “constant wear 

garment” when they were inside the module.  This change resulted in a significant improvement 

in sleep quality and duration while on the LM.  In addition, the temperature was stabilized 

throughout the mission and the crew reported that the temperature was ideal for sleep.  This crew 

was also provided with earplugs and mission planners established an environmental control 

checklist to aid in reducing noise pollution during sleep times.  The windows were modified with 
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improved shades, but the crew reported that the light leaking through the window shade stitching 

caused sleep disruption.  Although the improved sleep reported among Apollo 15 astronauts was 

attributed to a better sleep environment, this crew did not shift their schedule from their Earth-

based habits, which may have also contributed to better quality sleep. 

Apollo 16 

Sleep on Apollo 16 was thought to be generally good.  The first sleep period was around eight 

hours.  Liquid cooled garments were provided to crew during Lunar sleep periods (three days).  

Only one astronaut wore the liquid cooled garments the first night, but both wore them the 

second and third night.  The lunar module pilot took Seconal to aid in sleep during the first sleep 

period, but was awoken three times, twice by master alarms and once from a communication 

issue which created noise in his earphones (National Aeronautics and Space Administration 

1972).  During the traverse to and from the Moon, the astronauts found that the constant wear 

garment in addition to the sleeping bags was suitable for sleep.  However, while the Lunar 

Module was operating on the surface, the Command Module cooled significantly for the 

remaining pilot, which resulted in the need for extra layers.  Upon return of the other two 

astronauts, the Command Module rose in temperature. 

Apollo 17 

 Unlike the crew of Apollo 16, the astronauts on Apollo 17 preferred to not wear the 

liquid cooled garments.  The astronauts felt that they were too dirty and too tight-fitting.  The 

constant wear garments were worn instead for sleep periods.  All astronauts used Seconal as a 

sleep aid in at least some sleep periods.  It was noted that changes to the flight plan likely 

affected the quality of sleep.  The astronauts slept around six hours each day of the mission, 

except for the first day where only three hours was attained.  The commander made a point to 

state that sleep periods should be scheduled for eight hours each day (National Aeronautics and 

Space Administration 1973). 
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Figure 9.  Apollo Vehicle Volumes.  Source: Jerry R. Goodman (2010). 

 

 
Figure 10. Apollo Command Module sleep restraints (reproduced from McAllister 1972). 
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Figure 11.  LM sleep station. 

Source: http://www.hq.nasa.gov/pao/History/SP-4205/images/c150c.gif 

Salyut 

 The habitable volume for Salyut 1, 3, 4, 6, and 7 was 90 m3 and 100 m3 for Salyut 5 

(Portree and Center 1995).  The atmosphere composition was comparable to sea level and had a 

psi of 13.5-16 (Daues 2006).  The temperature could be set by cosmonauts between 15˚C (59˚F), 

and 25˚C (77˚F; Wieland 1994). 

 Aboard Salyut 1, cosmonauts used sleeping bags attached to the walls and on Salyut 3 

they used a foldaway bunk for sleeping (Häuplik-Meusburger 2011).  The sleeping bags were 

insulated with bed-sheet inserts and had air vents and fasteners that could open to release heat 

(Häuplik-Meusburger 2011).  The Russian crew quarters, Kayutas, was introduced on Salyut 6.  

This configuration was carried forward to both Mir and the ISS Service Module (Broyan Jr. et al. 

2008).  The Kayutas sleeping facility was located in the widest portion of Salyut (Bluth and 

Helppie 1986).  Despite this fact, it was reported that one cosmonaut's height, Valery Ryumin, 

caused problems.  He had to strap his bed to the floor and tuck his arms in because he was unable 

to squeeze into his allotted sleeping area on the ceiling.  The beds in Kayutas were heat insulated 

and also offered air vents with fasteners that could be opened for heat reduction (Bluth and 

Helppie 1986).  For sleeping, the cosmonauts reported that they would usually take their clothes 

off and put on fur boots, because weightlessness prevents normal blood circulation to the feet 

and they reported that their feet would get cold (Bluth and Helppie 1986).  There was minimal 

airflow on Salyut 6 and 7.  Cosmonauts have reported that they felt like they were suffocating at 

times due to slow air movement (Bluth and Helppie 1986).  In order to avoid breathing dust or 

mechanical particles during sleep, a special screening was developed to enclose the sleeping area 

(similar to a mosquito net).  The noise levels in the living quarters on Salyut 6 and 7 were 35-40 

dB for the day and 25-30 dB at night (Bluth and Helppie 1986), however, other reports suggest 

that the actual noise levels were much higher prompting a retrofit of some of the equipment 

during Salyut 9 (Kidger 1979 cited in Wilshire 1984).  The individual crew quarters in Kayutas 

provided a 20cm window for the cosmonauts, which resulted in increased radiation exposure 

http://www.hq.nasa.gov/pao/History/SP-4205/images/c150c.gif
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(Broyan Jr. et al. 2008).  It is possible that light pollution was problematic, but there are no 

reports documenting whether or not the cosmonauts felt this was a problem. 

 Sleep disturbance was prevalent during the Salyut missions, but may have related to the 

schedules that cosmonauts were required to work.  On Salyut 4, the cosmonauts were scheduled 

to sleep only when they were out of radio contact with Moscow (Yegorov 1979).  This led to a 

forced desynchronization between the cosmonauts' sleep opportunities and their circadian 

rhythms.  Due to the sleep issues experienced by the crewmembers on Salyut 4, the crew 

schedule was changed for Salyut 6, where all crewmembers were scheduled to sleep during the 

Moscow night.  It is also notable that during Salyut 6, cosmonauts were scheduled for a 9-hour 

sleep episode. 

 Salyut had many obstacles preventing ideal habitable conditions.  The treadmill used by 

cosmonauts for exercise was reportedly noisy and even caused the entire space station to vibrate 

during use (Hendrickx 2002).  Additionally, special space suits designed to be worn during 

exercise that would simulate gravitational effects by drawing blood to the legs had issues, which 

limited exercise in general.  In terms of safety aboard Salyut, there were several notable 

occurrences including, a case of a fire that prompted cosmonauts to board Soyuz and prepare for 

a launch before the situation was put under control (Hendrickx 2002). 

Skylab 

 The Skylab era featured four missions.  Skylab I involved putting the station into orbit 

and included no astronauts, while Skylab II, III and IV each included crews of three astronauts.  

The atmosphere composition aboard Skylab was 72% O2 and 28% N2 with 5 psia (Daues 2006).  

The primary habitable environment was the Orbital Workshop (OWS).  The OWS was a 

cylindrical container with a length of 15 meters and a diameter of 6.5 meters and a volume of 

275 m3 (Belew and Stuhlinger 1973; National Aeronautics and Space Administration 1991).  The 

total habitable volume of Skylab was over 360 m3 (National Aeronautics and Space 

Administration 1991).  The OWS was created with the intention that crew members would spend 

the majority of their time there conducting experiments, making observations, eating, and 

sleeping (Belew and Stuhlinger 1973).  The OWS featured individual sleep stations for each 

crewmember.  The sleeping frames were attached vertically to the wall in each sleep 

compartment.  The largest sleep compartment was 1.76 m3 and the smallest, 1.33 m3 (National 

Aeronautics and Space Administration 1974).  The sleeping frame was designed so that it could 

be removed and placed in different locations if desired by the crewmembers (Gillespie and Kelly 

1974).  Ambient temperature in the OWS was maintained at 23.9˚C (75˚F; MSFC Skylab 

Structures 1974).  The Skylab habitat, as a whole, ranged in ambient temperate from 20.1-23.9˚C 

(69-75˚F; Wieland 1994).  Skylab's average acoustic levels was 58 dBA and a NC-55 (noise 

criterion) curve across the habitable volume; the sleep area had a NC-43 curve and 45 dBA 

(Allen and Denham 2011).  During Skylab missions, crewmembers were allotted eight hours to 

sleep every day (Belew and Stuhlinger 1973).  The sleep chambers were designed so that during 

sleep periods, astronauts could quietly leave their partitioned crew quarters without waking one 

another.  However, noise from the waste management system, in particular the urine separators, 

was disrupting to the sleeping crew (MSFC Skylab Structures 1974).  See Figure 12 for a view of 

an astronaut in his sleep chamber and Figure 13 for an overview of Skylab. 

 The sleeping environment aboard Skylab was viewed as a considerable improvement 

upon earlier spaceflight habitats.  Skylab contained enough space, so that were designated areas 
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for working, exercising, eating, and sleeping (Frost et al. 1975).  Despite these improvements, 

there were still challenges presented by both the environment and the workload.  Operational 

demands often had astronauts completing tasks right up to their designated sleep period, creating 

difficulties with sleep onset as there was little time to relax (Stuster 1986).  Each Skylab mission 

also involved a four-hour forward adjustment in sleep schedules a week prior to completion in 

order to prepare for re-entry and splashdown related activities (Frost et al. 1975). 

 Astronauts on pre-Skylab missions commonly complained of insomnia, and in some 

cases periods of sleep loss degraded crew performance.  In response, Skylab astronauts 

completed a sleep monitoring experiment, MI33, which was the first objective measurement of 

sleep during spaceflight (Johnston and Dietlein 1974).  The Skylab experiment was conducted by 

Frost and colleagues, who collected objective sleep measurements of EEG, electrooculography 

(EOG), and head-motion signals. 

 
Figure 12. Astronaut Dr. Joseph Kerwin strapped into sleep restraint aboard Skylab. 

Source: https://lsda.jsc.nasa.gov/scripts/experiment/exper.aspx?exp_index=413 

Skylab 2 

 During Skylab 2, a 28-day mission, 12 of the nights included in-flight monitoring of sleep 

(Frost et al. 1975).  Sleep latency was reduced both in-flight and post-flight relative to pre-flight 

(Frost et al. 1975).  Average in-flight sleep time was 6.04 hours.  This was less than both pre-

flight and post-flight average sleep times (6.9 & 8.5 hours, respectively; Frost 1976).  Post-flight 

sleep time was also significantly greater than pre-flight and in-flight times (Frost 1976).  Frost 

(1976) notes that the reduced in-flight sleep time was primarily due to a lower amount of time 

spent resting in general (Frost 1976). 

Skylab 3 

 During Skylab 3, a 59-day mission, 20 nights included in-flight monitoring (Frost et al. 

1975).  No significant differences in sleep latency were found between pre-flight, in-flight and 

post-flight periods.  Average in-flight sleep time was found to be 6.31 hours.  Though this was 

https://lsda.jsc.nasa.gov/scripts/experiment/exper.aspx?exp_index=413
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less than both pre-flight and post-flight average sleep times (6.4 & 6.58 hours, respectively), the 

difference was not statistically significant (Frost 1976). 

Skylab 4 

 Crewmembers deployed on Skylab 4, an 84-day mission with 18 nights of in-flight 

monitoring, had varied sleep latency through the mission (Frost 1976).  Sleep latency differed 

from the first half to the second half of this mission (21.4 min & 9.7 min, respectively; 

Frost1976).  In contrast to the trends in observed in Skylab2 and Skylab 3, during Skylab 4, the 

average in-flight sleep time was greater than post-flight sleep time (6.69 & 6.53 hours, 

respectively), but still less than average pre-flight sleep time (7.29 hours), though these 

differences were not statistically significant (Frost 1976).  During the first 19 days of the 

mission, rest periods were 1.2 hours less than the pre-flight average (Frost 1976). 

 
Figure 13. Skylab artist's concept. 

Source: https://www.nasa.gov/topics/history/features/skylabartistconcept.html 

Space Shuttle 

 The total habitable volume of the Space Shuttle varied, with each Shuttle having a 

slightly different design, but each was around 71.5-74 m3 (Wieland 1994; Young et al. 2011).  

With the addition of the Spacelab module, used in The Shuttle's Cargo Bay as a space laboratory, 

the habitable volume could be increased.  The nominal ambient temperature range was 18.3-

28.9˚C (64.9-84˚F) in The Space Shuttle and the Spacelab module was between 18.3-26.7˚C (65-

80˚F; Wieland 1994).  The atmosphere composition aboard Shuttle was 78% N2 and 22% O2 

(psi=14.7; Daues 2006).  During Space Shuttle missions, astronauts slept in various locations, 

including: middeck, flight deck, and the airlock.  Astronauts slept in sleeping bags, sleep boxes, 

and flight deck chairs.  Earplugs and eye masks were provided to astronauts to aid with sleep. 

STS-9 was the first flight that included the sleep station (Legler and Bennett 2011).  A 

photograph of astronauts sleep aboard Shuttle can be seen in Figure 14. 

 Missions on The Space Shuttle exposed crewmembers to a 90-minute light-dark cycle 

due to passing around the Earth in low Earth Orbit (LEO).  Due to this, light levels aboard The 

https://www.nasa.gov/topics/history/features/skylabartistconcept.html
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Space Shuttle fluctuated to extremes.  In one study, a high illuminance of 79,000 lux was 

recorded on the flight deck, with a low of 73 lux when the shades were drawn (Dijk et al. 2003).  

In contrast, the middeck, where astronauts primarily slept, had a recorded high of 93 lux and an 

average of 9 lux during periods of sleep.  It is notable that these measurements were attained via 

sensors on the interior walls and do not necessarily represent the experienced luminance by the 

astronauts as they moved around. 

 Noise measurements were made aboard STS-2 using a noise criterion (NC) curve of 50 

for work areas and a NC-40 curve for sleep areas.  The flight deck was found to feature a noise 

range from 61-67 dBA; the mid-deck noise range was 68-87 dBA (Willshire 1984).  These 

measurements exceeded the noise requirement limits in both locations.  Improvements were 

made over time to lessen ambient noise.  Objective noise levels aboard the Space Shuttle were 

gathered on STS-50.  The middeck featured the lowest levels of background noise (dBA = 60; 

Koros et al. 1993).  The recommended noise limit for the middeck at the time of the 

measurements was 68 dBA.  Background noise levels for Spacelab and the flight deck were 61 

and 64 dBA, respectively (Koros et al. 1993).  The STS-50 crew complained about noise 

emanating from air flow in the flight deck aft (Koros et al. 1993).  Notably, activity in the 

middeck by astronauts during sleep periods was reported by the entire crew as disrupting to 

sleep.  One of the sources of disturbing noise was due to the opening and closing of lockers.  

Flynn-Evans and colleagues quantified sleep disturbance on Shuttle and found that 60% of 

crewmembers reported that their sleep was disturbed, with noise contributing to disturbance on 

23.8% of nights, while sleep was reportedly disturbed due to crewmembers being too hot 18.6% 

or too cold 2.6% of the time for each (Flynn-Evans 2010; Table 6). 

 
Figure 14.  Astronauts resting aboard Shuttle.  Source: On the Wings of a Dream: The Space 

Shuttle. 
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TABLE 6.  SHUTTLE CREWMEMBERS’ REPORTED CAUSES OF SLEEP DISTURBANCES 

Reported cause of sleep disturbance Percentage of disturbed nights 

 L-90 L-11 In-flight R+7 

Voids 50.0 49.0 42.1 38.8 

Noise 21.4 11.9 23.8 11.3 

Too cold 5.2 4.6 2.6 2.5 

Other crewmembers 0.0 0.0 3.2 0.0 

Too hot 5.2 2.6 18.6 5.0 

Mission duties 5.2 6.0 10.0 10.0 

Physical discomfort 12.3 9.9 10.9 11.3 
Unpublished data from Flynn-Evans, Barger and Czeisler.  Used with permission. 

 Beyond the challenges imposed by the habitation factors, astronauts were often required 

to dramatically shift their sleep schedules in order to fulfill duties.  This process is referred to as 

"slam shifting" and sometimes involved shifts in sleep schedules of up to 12 hours (Dijk et al. 

2003).  Trouble sleeping during The Shuttle missions was reflected by astronauts choosing 

‘sleep’ as the number one reason for pharmaceutical use (Putcha et al. 1999), which was further 

supported by Dijk et al. (2003) who found the most commonly used medication among 

astronauts aboard The Space Shuttle was sleeping pills.  In one study, astronauts (N = 5) slept 

approximately 6.5 hours with a minimum as low as 3.8 hours a night (Dijk et al. 2003). 

 Aboard The Space Shuttle, the pilot and commander would sometimes sleep in their 

chairs on the flight deck (Dijk et al. 2003).  Although some astronauts had access to a personal 

"sleep cabinet," it was more common that astronauts slept in either The Spacelab or middeck 

with the use of Velcro attached to the walls (Dijk et al. 2003).  Shuttle sleep station provisions 

can be seen in Figure 15. 

 STS-115 was the first flight that used an Airlock Campout Prebreathe Protocol, which 

was used to prevent any episodes of "the bends" (i.e. decompression sickness) while on an EVA.  

Astronauts spent their sleep period in the Quest Airlock at a reduced air pressure (Legler and 

Bennett 2011). 
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Figure 15. Shuttle sleep station provisions.  Source: http://history.nasa.gov/diagrams/shuttle.htm 

Mir 

 The Mir space station, like the International Space Station, was built in stages.  Mir's base 

block (core module) had a habitable volume of 90 m3 (Portree and Center 1995).  The Mir 

complex, which was comprised of Mir base block, Kvant, Kvant 2, and Kristall, with docked 

Soyuz-TM and Progress-M spacecraft, was 372 m3 (Portree and Center 1995).  The core module 

on Mir had an ambient temperature range of 17.8-28.8˚C (64-82˚F) with a relative humidity of 

20-70% (National Aeronautics and Space Administration).  Mir's Atmosphere composition 

mimicked a sea-level atmosphere, with up to 78% N2, 21-40% O2 (psi = 6.8).  See Figure 17 for 

an overview of the pressurized volume of space vehicles up to 1990. 

 The crew quarters, Kayutas, were used on Mir.  Kayutas had two individual crew quarters 

with sleeping bags; additional crew would use hammocks (Häuplik-Meusburger 2011).  Noise 

measurements were taken during the STS-74 mission, of the Shuttle-Mir era.  The NC-50 curve 

requirement was surpassed in every location except the Kvant-2 airlock (Parsons). 

 In an interesting habitability-related occurrence, Mir experienced problems with its water 

recycling system and had too little water for crew showers.  It was discovered that materials 

aboard Mir were absorbing water via the air's humidity (Wieland 1994).  Materials used for 

sound and thermal insulation were particularly apt at absorbing water.  In response, the water-

soaked materials created a suitable home for bacteria, which fed on the adhesive binding the 

materials to the wall and eventually started dislodging materials and leaving an autotroph-filled 

green slime on the walls. 

http://history.nasa.gov/diagrams/shuttle.htm
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Figure 16. Diagram of Mir's core module. 

Source: http://history.nasa.gov/SP-4225/diagrams/mir/mir-diagram-1.htm 

http://history.nasa.gov/SP-4225/diagrams/mir/mir-diagram-1.htm
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Figure 17. Pressurized volume per crew member and mission duration 

Source: Sherwood& Capps (1990).  Long Duration Habitat Trade Study: Space Transfer Concepts 

and Analyses for Exploration Missions. 

Shenzhou 

 Shenzhou is a capsule style space vehicle built by the People's Republic of China.  

Shenzhou cabin diameter at its widest is 2.5m, making it larger than Soyuz TM which is 2.2m in 

diameter (People's Daily Online).  The capsule has the capabilities to transport three astronauts 

on a mission (People's Daily Online). 

International Space Station (ISS) 

 The International Space Station has a habitable volume of 388 m3 (National Aeronautics 

and Space Administration).  For a summary of the Human Spaceflight Data Set as of July 18, 

2006, see Table 7.  An overview of spaceflight mitigations can be seen in Table 8. 

 The ISS has made notable improvements in the habitable space environment compared to 

previous space vehicles.  For example, the cabin air assembly is programmed to reduce the 

temperature to 18.3˚C (65˚F) about one hour before sleep and is maintained at 22.2˚C (72˚F) 

during awake operations (Balistreri et al. 2007).  The ISS has had two iterations of sleep 

chambers in the United States Orbital Segment (USOS).  The first was The Temporary early 

Sleep Station (Espie et al.) and the second generation was Crew Quarters (CQ).  In the Russian 

Segment is Kayutas, which has been used in both Mir and Salyut. 

Kayutas.  Kayutas, initially developed for use in Salyut 6 (Broyan Jr. et al. 2008), is the sleep 

station in the Russian Segment of the ISS.  Kayutas has accommodations for two crew members 

(Broyan Jr. et al. 2008).  Two of the Russian Segment modules have been found to have high 

acoustic levels.  The Docking Compartment (DC-1) and Mini Research Module 2 (MRM2) had 

an ambient output of around 67 dBA (Allen and Denham 2011). 
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The Temporary early Sleep Station.  The Temporary early Sleep Station was created to house 

astronauts prior to the completion of Crew Quarters and was located in United States Operational 

Segment (USOS) of ISS (Espie et al.).  The habitable volume of TeSS was approximately 2.2 m3 

and was able to accommodate one astronaut at a time (Goodman 2010; Keener et al. 2002).  The 

inlet air temperature for TeSS was 12.8˚C (55˚F) and the general ambient temperature within 

TeSS was around 23.9˚C (75˚F; Keener et al. 2002).  The estimated maximum CO2 level near an 

occupant’s head was 0.5% (Keener et al. 2002).  TeSS was designed with openings for electrical 

cables and to allow external alarms to be heard, which resulted in the intrusion of some noise and 

light pollution within the sleep chamber.  Some crewmembers reported discomfort due to the 

ventilation system in TeSS which was limited and did not allow for personal customization of air 

flow, which arrives from air ducts (Imhof et al. 2010). 

Crew Quarters.  A great deal of effort went into the design and implementation of the ISS Crew 

Quarters (CQ), located inside of the module Node 2.  The ISS Crew Quarters were designed to 

fit in a standard rack on the station.  This allows for 2.1 m3 of internal space.  The door to CQ 

was designed to minimize transmission of light and noise from the outside of the chamber to the 

inside.  Inside Node 2, the sound levels are below the NC-50 requirement, with the four 

individual sleep stations within Node 2, experiencing sound levels ranging from 36.8 to 43.8 

dBA (Allen and Denham 2011).  The door opens to 51 cm x 102 cm and has been reported to be 

acceptable to the crew (Broyan Jr. et al. 2008).  CQ offers ventilation control to its inhabitants, 

which flows towards a crewmember’s head for maximum efficiency in cooling if a crewmember 

is in a sleeping bag (Broyan Jr. et al. 2008).  However, CQ can only adjust temperature by 

increasing air flow rate and has no other cooling method (Broyan Jr. et al. 2008).  The ambient 

noise level also increases with additional air flow rates (Broyan Jr. et al. 2008).  CQ receives air 

from ventilation in front of the individual sleep stations.  Node 2 typically fluctuates between 

18.3˚C (64.9˚F) and 20˚C (68˚F) and CQ can reach temperatures as low as 20˚C (68˚F).  CQ also 

features florescent lights that can be dimmed and shaded (Broyan Jr. et al. 2008).  The sleeping 

bags have two D-rings for its attachment and offer 125 Velcro attachments (Broyan Jr. et al. 

2008).  During the development of CQ, many design changes were made in response to user 

feedback.  One such design change involved the fact that the larger unit was preferable in order 

to provide more head room.  Improvements affecting CQ over the years have included changes 

to ISS's Pump Package Assemblies, which were modified to reduce noise output (Allen and 

Denham 2011).  A photo of CQ can be seen in Figure 18. 
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Figure 18.  Crew Quarters on the International Space Station.  Source: 

http://www.nasa.gov/mission_pages/station/multimedia/gallery/iss026e012169.html 

 

TABLE 7. SUMMARY OF THE HUMAN SPACEFLIGHT DATA SET AS OF JULY 18, 2006 

 
Note:  Duration values are in days; Volume values are in cubic meters.  Volume values were calculated as a 

function of crew size. 

Reprinted from:  Cohen (2008), "Testing the Celentano Curve: An Empirical Survey of Predictions for 

Human Spacecraft Pressurized Volume," with permission from SAE International.

http://www.nasa.gov/mission_pages/station/multimedia/gallery/iss026e012169.html
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TABLE 8. SPACEFLIGHT REVIEW TABLE: MITIGATIONS 

Mitigations 

Mission Sleep Location Volume/Size Ambient Temperature Comfort Objects Airflow/Quality Noise Light 

Vostok Not Known ~2-3 m3 Cosmonaut controlled: 12-

25˚C (53.6-77˚F) 

Relative humidity: 30-

70% 

Not Known Sea-level 

atmosphere 

(O2/N2 mixture) 

14.7 psi  

Not Known Not Known 

Mercury Strapped to 

couch 

Habitable 

volume: 1.02 m3 

Mercury-Atlas 7: 27.8-

42.2˚C (82-108˚F) 

Not Known Atmosphere 

composition: 

100% O2 (5 psia) 

Not Known Not Known 

Voskhod Not Known ~2-3 m3 Cosmonaut controlled: 12-

25˚C (53.6-77˚F) 

Relative humidity: 30-

70% 

Not Known Sea-level 

atmosphere 

(O2/N2 mixture) 

14.7 psi  

Not Known Not Known 

Gemini Strapped to 

couch 

Habitable 

volume: 2.55 m3
 

Not Known Not Known Atmosphere 

composition: 

100% O2 (5 psia) 

Not Known Not Known 

Soyuz Not Known Orbital Module: 

6.51 m3 

Descent 

Module: 3.99 m3 

Cosmonaut controlled: 12-

25˚C (53.6-77˚F) 

Relative humidity: 30-

70% 

Not Known Atmosphere 

composition: sea-

level atmosphere 

(O2, N2 mixture; 

psia = 13.7-16.4) 

Not Known Not Known 

Apollo 

11 

12 

13 

Command 

module / lunar 

module 

Command 

Module's 

habitable 

volume: 5.95 m3 

Lunar Module's 

habitable 

volume: 4.5 m3 

Apollo 7-17: Command 

Module cabin temperature 

average: 63-73˚F (low: 

43˚F; high: 81˚F 

Nominal Range: 21-24˚C 

(70-80˚F); relative 

humidity: 40-70% 

Command 

Module: sleeping 

bags, couches, 

"curled up," 

hammocks 

Command 

Module 

atmosphere 

composition: 

100% O2 (during 

launch: 40% N2, 

60% O2) 

Lunar module 

atmosphere 

composition: 

100% O2 (both 

habitats: 5 psia) 

Not Known Not Known 
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Salyut Large-diameter 

work 

compartment, 

on the wall; 

orbital 

compartment 

Salyut 1,3,4,6,7 

habitable 

volume: 90 m3 

Salyut 5 

habitable 

volume: 100 m3  

Temperature could be set 

by cosmonaut between 

15°C (59°F), and 25°C 

(77°F) 

Sleeping bags 

with sheet inserts, 

bunks 

Atmosphere 

composition: sea-

level atmosphere 

(O2, N2 mixture; 

psi = 13.5-16) 

Not Known Not Known 

Skylab Private Crew 

Quarters in 

OWS 

Smallest CQ: 

1.33 m3 

Largest CQ: 

1.76 m3 

OWS habitable 

volume: 275 m3 

Total habitable 

volume: 360 m3 

OWS: 75˚F 

Habitat Range: 20.1-

23.9°C (69-75°F) 

Sleeping frames, 

blankets, pillows, 

sleep restraints 

Atmosphere 

composition: 

72% O2 , 28% N2 

(5 psia) 

Skylab acoustic 

Levels (three 

missions) were 

NC-55, 58 dBA 

averaged over 

the habitable 

volume and 

NC-43, 45 dBA 

in the sleep 

area 

Not Known 

Shuttle Varies: 

middeck, flight 

deck, airlock  

Habitable 

volume: 71.5-74 

m3
 

Spacelab: 18.3-26.7˚C 

(65-80˚F) 

Nominal Range: 18.3-

28.9˚C (64.9-84˚F) 

Sleeping bags, 

sleep boxes, flight 

deck chairs 

Atmosphere 

composition: 

78% N2, 22% O2 

(psi = 14.7) 

Mid-deck: NC-

64 and 68 dBA 

Flight-deck: 

NC-58, 63.4 

dBA 

Shades over 

windows; eye 

covers 

provided 

Mir  Individual 

cabins in Mir 

base block 

Service 

Module:2.4 ft x 

2.8 ft x 6.2 ft 

Habitable 

volume: 90 m3 

Mir Complex 

(Mir base block-

Kvant, Kvant 2, 

and Kristall) 

with docked 

Soyuz-TM and 

Progress-M 

spacecraft) 

habitable 

volume: 372 m3 

Core Module: 17.8-28.8˚C 

(64-82˚F); Relative 

humidity: 20-70%  

Two Sleeping 

bags; other crew 

would use 

hammocks 

Atmosphere 

composition: sea-

level atmosphere, 

up to 78% N2, 

21-40% O2 (psi = 

6.8) 

Not Known Private 

sleeping 

cabins had 

windows 



 

57 

ISS Crew Quarters, 

Kayutas, 

Temporary 

early Sleep 

Station 

TeSS (~2 m3) 

CQ: 2.1 m3 

Habitable 

volume: 388 m3 

CQ: >20˚C 

Node 2: 18˚C 

Sleeping bags CQ: Personalized 

air flow; .42-5.1 

m3/min of air 

flow 

TeSS: Inability to 

direct air flow 

reported as a 

source of 

discomfort 

Atmosphere 

composition 

(American 

segment): 21.5% 

O2, 78.5% N2 

(psia = 14.7) 

Atmosphere 

composition 

(Russian 

segment): similar 

to Mir 

CQ: Changes 

to Pump 

Package 

Assemblies 

(PPAs); At all 

speeds the CQs 

are close to the 

NC-40 

continuous 

noise 

requirement for 

sleep 

CQ: 36.8 to 

43.8 dBA; 

(quiet) 

TeSS: Acoustic 

blankets were 

used to 

mitigate noise; 

astronauts 

reported that it 

was too noisy 

Zvezda has 

windows 

TeSS: light 

pollution was 

a reported 

problem 

Note: psia = pounds per square inch absolute 
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QUALITATIVE INTERVIEWS WITH SUBJECT MATTER EXPERTS 

Interview with Navy Personnel 

 Navy SME 1 is a Navy scholar with extensive experience in fatigue research.  In addition 

to Navy SME 1's scholarly work, Navy SME 1 has also spent time on small to carrier size ships 

for up to five weeks at a time. 

 Navy SME 2 is also a Navy scholar, drawing upon 25 years of Naval experience.  Navy 

SME 2 has served as a Commanding Officer with primary experience aboard Fast Attack Ships.  

In particular, Navy SME 2 has extensive knowledge in human performance in Naval operational 

environments. 

 Navy SME 3 is a lieutenant commander of the US Navy.  Navy SME 3 has held several 

Navy leadership positions in the Navy. 

 Navy missions are similar to spaceflight operations, whereby there are often long 

durations of time when assignments include maintenance of the vessel, followed by episodic 

bouts of high activity associated with pulling into port or performing a war maneuver.  Boredom 

can be a tremendous problem, particularly for smaller teams, and can exaggerate the stress 

experienced by crewmembers during episodes of high activity. 

 The typical naval deployment is currently 8-9 months, however, the US Navy fleet are 

designed for "Underway Replenishments", where food and fuel are transferred from a supply 

ship to a warship, and could be continually lived in until the ship needed to be pulled in to dry 

dock for repairs.  Given the size of some Navy ships, it is possible for individuals to work and 

live below deck for days or weeks at a time, this is often referred to as “mole mentality.”  

Sometimes fellow crewmembers recognize this state and suggest that an individual spend some 

time topside in order to gain some sun exposure.  Caffeine use is prevalent among Navy 

personnel.  Energy drinks are often consumed by young crewmembers, while coffee is more 

frequently used by older crewmembers. 

 There are very diverse sleeping quarters across naval environments.  Most ships have 

multiple bunkrooms.  They are divided between males and females, but are not organized by 

schedule, so there is frequent disruption from individuals coming into the bunkroom for personal 

items while others are sleeping.  There are generally fewer people assigned to the female 

bunkroom, given the ratio of men to women on a typical Navy ship.  Despite this, crewmembers 

are provided with a very limited amount of personal space within the bunkroom whatever the 

available volume may be. 

 There have been some circumstances where the original design of a vessel was 

inadequate for sleep habitability.  For example, the Littoral Combat Ship (LCS) was designed for 

two females to be in one room and included two foldaway sleeping racks.  However, it was later 

realized that more crewmembers were needed aboard the ship.  As a result the bunkrooms were 

retrofitted to accommodate bunks for six individuals in a space that was originally designed for 

two.  The retrofit of the LCS involved installation of cloth curtains to divide personal space and 

individual bunks separated by a narrow aisle that is less than an arm’s length distance from one 

another. 

 The standard issue sleep bunk includes a mattress comprised of a dense cotton-like 

material, a pillow, sheets and a blanket.  There is a thin curtain that can be drawn to enclose the 

bunk space, but it does not provide insulation, sound attenuation or protection from light 
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pollution.  Crewmembers are not supposed to modify their sleeping environment, because all of 

the standard issue items have been tested for use on a ship and have specific flammability 

requirements.  Although crewmembers are not supposed to bring their own supplies, many 

crewmembers find the bunk space uncomfortable and bring foam toppers and personal bedding 

for their bunks.  Many also bring thick curtains to hang along the side of their bunk to provide 

better privacy, sound attenuation and to block out light.  In addition, many of the curtains that 

crewmembers bring themselves are specifically made with pockets to house personal belongings.  

Without these pockets, crewmembers have limited space to store personal belongings. 

 Navy ships tend to be very cold in berthing spaces.  There is no personal temperature 

control on Navy ships.  In some cases, crewmembers will bring additional items to keep warm. 

 The berthing spaces for officers typically accommodate two individuals and include a 

small space for a desk.  The Executive Officer and Commanding Officer typically have their own 

private sleeping quarters. 

 Commanding Officer crew quarters may have a window, but typically there is no outside 

light in berthing compartments.  However there is a lot of light pollution from flashlights and 

phones in berthing compartments.  There are constant checks of lights in berthing compartments, 

which can disturb sleep.  There are small florescent lights available for reading in bunks. 

 A great deal of light exposure is based on where people work.  In one case where 

crewmembers were working night shifts, people who worked below deck stopped smoking, 

because they could only smoke above deck and they 'didn't want their clocks ruined by finding 

out what time of day it really was'. 

 Navy SME 2 stated that the sleeping quarters in ships have changed over time.  Ships 

commissioned before World War II tended to be all metal, without any wood, and you could see 

all of the piping.  Navy SME 2 noted that newer ships have slightly larger bunk rooms and that 

the pipes are enclosed in the walls, making the visual appearance of the space more similar to a 

finished room. 

 Hot bunking, which is the practice of two or more alternating shift crewmembers sharing 

a space, primarily only occurs with submariners.  However it can occur in surface vessels when 

areas within a ship are being situated or repaired.  Privacy is a really big issue with hot bunking 

and people do not like it. 

 Noise is a constant issue aboard naval vehicles.  Noise can be categorized into external 

noise and internal noise.  External noise includes: mechanical noise, air containers, people 

working, and certain areas being busy during certain times (dependent on shift schedule).  

Internal noise includes: snoring crewmembers, individuals on different shifts entering the room 

to get personal items, individuals in the bunk room listening to music, watching television and 

talking. 

 External noise can be continuous or intermittent.  Aboard aircraft carriers, crew who 

sleep under the 'trap' feel the rumbling of the steam aircraft catapult, which is used to assist in 

aircraft launch.  The steam catapult during launches, the wires and hook during landings, and jet 

engines all create a lot of noise.  Noise from the carrier deck can be extremely disruptive and was 

described as sounding similar to an explosion every time an aircraft launch or landing occurred.  

It was also noted that on aircraft carriers, berthing compartments tend to be closer to the deck, 
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which leads to an even higher decibel level during sleep.  The level of noise that crewmembers 

experience is associated with noise-induced hearing loss, especially on carriers. 

 External noise can also emanate from alarms and speakers.  The public announcement 

(PA), or 1Main Circuit (1MC), provides announcements throughout all shifts and 

announcements are not suppressed in the bunkrooms.  Crews find it very difficult to manage this 

need to hear announcements of importance with the need to sleep through announcements that 

are not important.  Crewmembers can use earplugs, but many individuals have a fear of 

oversleeping or missing an important announcement while wearing them. 

 Internal noise, that is noise emanating from within the bunkroom, can also be a problem.  

Navy SME 1 described a personal experience where Navy SME 1's sleeping quarters were 

adjacent to a hallway with a soft drink machine.  Navy SME 1 reported that you could hear 

intermittent noise from cans dropping out of the machine 24 hours a day.  Navy SME 1 also 

reported that the sound of steel-toe boots hitting the floor would amplify the sound typically 

generated by an individual walking down a hallway. 

 In addition, many bunkrooms are designed so that the beds can be lifted and stowed out 

of the way or so that they can be lifted to access a storage compartment below.  The sound of the 

bunks being lifted and released can be a noisy process and can be especially disruptive if the 

bunk slams down.  This type of noise is a frequent disruptor due to the number of individuals 

sharing a bunkroom. 

 Air quality can be a major issue on Navy ships.  Fumes and odors are ever-present and 

engine spaces often have noxious fumes emanating out.  Additionally, body odor from 

crewmembers has been reported as an issue, particularly in the berthing areas.  Humidity is 

typically not an issue, however, air ducts can 'blast' cold air, which can be uncomfortable. 

 Ship motion is also disrupting to sleep.  During combat missions individuals can feel 

safety concerns and stress related to both previous harrowing missions and exposure to noises 

that could work as triggers for emotional distress. 

 Navy SME 1 stated that in his opinion the three most critical factors to habitability to 

consider are privacy ("in order to prepare for sleeping and to cool down"), ship motion, and 

external noises. 

Interview with a Commercial and Military Pilot 

 Aviator SME is a commercial pilot with more than thirty-four years’ experience as a 

rated pilot.  The aviator SME was commissioned in the United States Air Force in the early 

1980s. Aviator SME's career began as a pilot training student.  A Distinguished Graduate of F-16 

training, aviator SME eventually transitioned to the United States Air Force Reserve.  Aviator 

SME retired as a Fighter Squadron Commander with over 3000 hours in Fighter and Attack 

aircraft, including 88 combat missions in the F-16.  Aviator SME has been flying for a major 

commercial airline for more than two decades.  Aviator SME holds Flight Engineer rating’s on 

the B-727 and DC-10 aircraft as well as Airline Transport Pilot rating’s on the B-757, B-767, and 

B-777 aircraft.  Aviator SME currently flies ultra-long-haul passenger routes on the Boeing 777-

200 and 777-300. 

 Aviator SME has slept in a variety of locations during tenure as a commercial airline 

pilot.  Aviator SME has slept in designated sleep bunks, business class seats that lay flat, first 

class seats that lay almost flat, and economy cabin seats that offer a modest recline.  It was 
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reported that aviator SME finds the bunk spaces to be the most comfortable.  Although the lie 

flat seats allow for sleeping in the horizontal position, they do not allow for much movement 

during sleep.  Aviator SME reported that in lie flat seats it is difficult to sleep on one's stomach 

or side due to pressure placed the lower back. It was reported that sleeping in any seat elsewhere 

in the cabin leads to poor quality sleep, even when passengers are sleeping, due to trying to sleep 

in an elevated position and due to noise and movement from passengers. 

 Aviator SME reported that the size of bunks and orientation of bunk spaces vary from 

aircraft to aircraft.  Each type of bunk presents different benefits and challenges.  Aviator SME 

finds that the bunk aboard a 777-300 is a little cramped to get into, but felt there was enough 

space for sleep once laying down.  In contrast, the interior dimensions of the lower bunk in a 

777-200 are smaller with less overhead room.  Aviator SME said that sometimes bunk spaces are 

a little smaller than guidelines recommend, because the FAA will sometimes provide a waiver 

for size requirements of a bunk space if the area is within a couple of inches of the designated 

space goals. 

 The amenities in the bunks are similar between aircraft.  Each bunk has a curtain and 

door to buffer sound and to block out light and noise.  Aviator SME reported that the 777-200 

mattresses are thin and hard, which makes them uncomfortable.  Aviator SME said that most 

pilots will take a mattress pad and several blankets from the passenger cabin and lay them on the 

bunk for more padding.  Aviator SME reported that pilots usually also bring multiple pillows 

from the passenger cabin due to inadequate pillows in the bunk.  Some aircraft have better 

quality mattresses with more padding, but pilots usually lay blankets down on top of the mattress 

due to issues with cleanliness.  Although aircrafts are serviced after each flight, only the bedding 

is thoroughly cleaned and replaced, while the interior of the bunks typically do not get a 

thorough cleaning.  This leads to the buildup of dirt and dust in the bunk.  Some pilots cannot 

sleep in the bunks due to dust allergies and those that do use the bunks cover as much of the 

mattress as possible with blankets to minimize the disturbance of dust when sleeping in the bunk. 

 Privacy concerns influence what pilots wear in the bunks.  Most pilots will leave their 

uniforms on or partially on during sleep in order to be able to respond quickly in an emergency.  

Aviator SME will sleep with pants on, only removing the uniform shirt, which is not how aviator 

SME sleeps at home.  Taking more clothes off would delay response time in an emergency, but 

creates a trade-off with comfort as the pants create uncomfortable friction. 

 Aviator SME felt that noise was the most significant obstacle to quality sleep on a flight.  

The 777-300 has bunks in the top section of plane, located above first class.  Aviator SME feels 

those bunks are better for sleep because they are isolated from noises in the main cabin and wind 

passing over the exterior of the aircraft creates white noise.  In contrast, the 777-200 bunks are 

next to the galley.  The flight attendant jump seats are located on the outside of the bunk on the 

777-200, and because they are spring loaded, they often slam against the wall and make a lot of 

noise in the bunk.  Aviator SME said the bunk was designed in a way that it ends up amplifying 

the sound of the seat slamming, acting like a "sound chamber."  Similarly, in some aircraft the 

flight attendant intercom or lavatory are located near the bunk, which can cause significant noise 

disruption during sleep. 

 The PA system can also be disruptive to pilots in the bunk.  Aviator SME noted that the 

operating pilots control whether PA announcements are transmitted to the bunk or to passengers.  

Aviator SME said that this is so that in the event of an emergency, the operating pilots can reach 
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the resting pilots.  Sometimes the operating pilots will not realize that they are transmitting 

messages to the bunk and will accidentally wake resting pilots by making general 

announcements meant for the passengers. 

 In order to mitigate the impact of noise on his sleep quality, Aviator SME reported often 

wearing headphones for periods of sleep.  The headphones play white noise from a phone app.  

Aviator SME feels that the headphones playing white noise cancel out 80-90% of the noise 

disturbances.  Aviator SME stated that blocking out noise is central to staying in deep sleep and 

getting quality rest. 

 The curtains in the bunk do a good job at blocking out light.  The bunk facility features 

an overhead light and a reading light that can be switched on/off.  There are small indicator lights 

present in the bunk that other pilots cover up with tape during sleep, but aviator SME is not 

bothered by the indicator lights.  Eye masks are available for pilots to aid with sleep, but aviator 

SME felt they were more bothersome than helpful. 

 The bunks allow for some climate control.  Each bunk has a thermostat that can be 

controlled by the occupant.  Aviator SME reported preferring the room to be cold for sleep and 

keeping the thermostat on the coldest setting possible.  Aviator SME would rather use a few 

extra blankets versus being hot. 

 Aviator SME reported that there are generally no issues related to the intrusion of smells 

or 'stuffiness' in the sleep bunk.  There is an airflow vent directly above the head of a pilot in the 

bunk.  This vent can be open/closed and directed to suit a pilot's needs; for example, the vent can 

be rotated, so that it does not blow in the face but still creates air flow.  Aviator SME noted that 

there are issues related to air quality that stem from altitude differences.  Aviator SME reported 

that when aircraft fly at lower altitudes, they are more humid, which makes it easier to sleep.  

Aviator SME said that the pilots who fly the 787 feel that their sleep quality is much better than 

in the 777 due to the higher humidity and lower altitude.  In order to mitigate the negative effects 

that come from working and sleeping in a dry environment, aviator SME reported drinking a lot 

of water throughout a flight. 

 Movement from the aircraft does typically disrupt sleep.  Aviator SME noted waking up 

during light turbulence, defined as bumpiness accompanied by slight erratic changes in altitude 

and/or attitude, but can usually go back to sleep if the air stays smooth.  Aviator SME reported 

having never been on a rest break during severe turbulence, defined as large and abrupt changes 

in altitude and attitude, with momentary loss of control, but has been the operating pilot during 

severe turbulence while others are on rest breaks.  Aviator SME said that pilots who are in the 

bunks during severe turbulence state that they have to brace their arms and legs against the 

ceiling of upper bunk to keep from being thrown around the bunk, even when cinched tight.  

They are unable to leave the bunks during such episodes and sleeping is impossible. 

Military Experience 

 Aviator SME spent 27 years in the Air Force, flying F16, and A10 aircraft during five 

combat tours. During this time, Aviator SME was exposed to many different sleep situations. 

 During deployment aviator SME would sleep in air-conditioned tents near a runway and 

cargo ramp.  The pilots slept on army cots with a thin layer of foam and a sleeping bag.  It was 

started that while Aviator SME isn't sensitive to the comfort a sleeping surface, that this bedding 

was comfortable. Aviator SME felt that noise caused the biggest disruption to sleep due to 24-
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hour operations at the bases.  Aviator SME said that cargo aircraft would fly in and leave their 

engines running in order to take-off after dropping cargo.  This often led to so much noise from 

plane engines running near the sleep space and from frequent take-offs and landings that 

achieving quality, restorative sleep was impossible. 

 Temperature was also an issue during deployment due to the hot climate.  Aviator SME 

said that when the air conditioners were running the sleep environment was adequate, but when 

they broke, the temperature would quickly rise to over 100˚F, making sleep impossible.  Aviator 

SME stated feeling that noise and temperature control are the biggest factors that facilitate sleep. 

 Aviator SME said that the experienced sleeping environments were not sterile like at 

home, but felt that they were suitable for sleep.  Aviator SME noted that on one deployment the 

base was mortared and shelled multiple times a day and at night.  Noise from the explosions 

would wake aviator SME and it would be difficult to go back to sleep.  In these circumstances, 

aviator SME would get so fatigued that sometimes air base attacks would be slept through.  

Aviator SME noted that there aren’t really any countermeasures sufficient to promote sleep in 

those situations, but that having a healthy diet and regular exercise help improve sleep quality in 

anxiety-inducing situations.  Aviator SME also noted that the majority of airmen would take 

zolpidem in order to get quality sleep during deployment. 

 Even with the use of medication, aviator SME stated sometimes not realizing the level of 

fatigue being experienced until returning home.  It was reported that after a 90 day deployment 

of sleeping 3-4 hours each night, aviator SME slept 18 hours a day for four days upon returning 

home. 

Interview with Oilrig Engineers 

 Oilrig SME 1 began working in the oil field in 1993 after a tour in the Army.  Oilrig SME 

1 has held several different positions for three different companies and has worked on fixed leg 

or floating oil rigs for nine years. 

 Oilrig SME 2 has been working in the oil field for over 20 years.  Oilrig SME 2 has 

worked on many different types of offshore rigs including platform rigs, jack-up rigs and semi-

submersible rigs where the accommodations varied widely in size and quality. 

 The habitable environment on an offshore rig varies based on the design of the platform.  

Shallow water fixed platforms have cramped quarters and little communication.  Facilities on the 

platforms are often portable, with bunks stacked as much as three high.  In contrast, deep-water 

vessels are large, with new, better habitability and are the size of ocean cruise liners. 

 The deployment to a rig varies by individual.  Some people are on for 28 days, then off 

for 28 days, some are on for 14 days and off for 14 days.  Some individuals are deployed for an 

indefinite amount of time, “until the job is done.”  A 12 on, 12 off schedule is typical for the rig 

crew, although some individuals have to work shifts up to 16 hours a day.  Contractors will come 

in and work for close to 72 hours straight and then leave.  These individuals just catch naps 

whenever they can. 

 On most rigs individuals have a private bedroom, but up to four rooms will share one 

bathroom.  Senior staff will often have a private bathroom.  Many of the sleep rooms are small, 

with little space for personal items, although some of the newer rigs have sleep rooms “the size 

of a nice office” for everyone.  Hot bunking or “hot sheeting” used to be a common practice on 

bunks, but is rarely done at the present time.  Each rig has catering crews that clean the rooms 
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and take care of meals for the crew.  The bedding that is provided is not very comfortable and 

most individuals bring their own pillows and blankets.  Some of the mattresses were described as 

being “horrible” for sleep and as a result crew who are deployed for long durations of time will 

often bring their own mattress.  Both oilrig SMEs emphasized that providing a uniform sleep 

space does not work.  Everyone has different needs and sleep accommodations should allow for 

a flexible, customizable sleep environment. 

 Oilrig SME 1 stated that everyone needs to have a place to get away, be alone and not be 

disturbed.  Oilrig SME 1 said that it is very important to be able to possess certain things and 

have your own space even if it’s just a bed in a shared room.  Oilrig SME 1 noted that having 

one’s own space helps with morale.  Oilrig SME 1 said that you don’t feel as important when 

you are sharing a space. 

 The rooms have windows with pull down airplane-like shutters.  Both oilrig SMEs agreed 

that it is not a good idea to have windows in dedicated sleep spaces.  They both felt that it is very 

important to have a dark environment for sleep, particularly when one is required to sleep during 

times when the sun is out. 

 Erratic noises are a problem, particularly as they relate to other crewmembers.  Individual 

differences in sleep timing and leisure activities result in noise from awake crewmembers 

disturbing sleeping individuals.  It is also a big problem when one crewmember snores, because 

that disrupts the sleep of everyone in the area.  Some machine noise acts as white noise and is not 

a problem for sleep, but some machines vary in pitch or volume, which causes sleep disruption.  

There are generally more noises that could disrupt sleep during the day, when helicopters are 

landing and there is generally more activity.  This can be a problem for people who have to work 

at night.  Earplugs help as a mitigation against noise, although some people find them 

uncomfortable to use.  The alarms are loud and piercing and some alarms have flashing lights, so 

they can easily be heard through the earplugs. 

 Temperature fluctuates by time of day and the area where one is stationed on the rig.  The 

temperature in interior rooms can be widely different than the temperature in exterior rooms.  

Most individuals do not have control of the ambient temperature and the rooms are generally 

perceived as cold, although not so cold that sleep is disrupted.  Individuals will customize the 

temperature of their sleep environment by modifying their bedding. 

 There are no notable issues associated with air quality, but personal hygiene and body 

odor can be a problem that results in sleep disruption. 

 Both oilrig SMEs offered many suggestions for creating an optimal sleep environment in 

an isolated and confined environment.  Oilrig SME 1 remarked that “A poor sleep environment 

is a form of torture.”  They suggested that maintaining an appropriate light-dark cycle and 

staying on schedule would be key to future expeditions.  They suggested that they would want 

the lighting to turn on and off with a regular schedule to maintain a connection to the “day.”  

They said that it would be good to have a manual override of the lights, but that having a 

replication of a regular light-dark cycle would help keep everyone sleeping well.  They felt that 

when shiftwork is necessary, individuals should be given very specific schedules, because erratic 

schedules lead to sleep disruption.  They also felt that sleep spaces should be located away from 

common spaces in order to reduce sleep disruption due to other people. 
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 They recommended that the habitable environment should allow for expression of 

individual differences.  They said that they have observed that unpredictable events can cause a 

great deal of stress.  For example, they said that on one work rotation they ran out of soda after 

five days. As a result, people started complaining and morale went down.  They notice that 

different crew respond to mental and physical stress in different ways and that individuals need 

their own private environments.  They also felt that personalization of the sleep environment was 

very important in reducing stress. 

Interview with Sleeping Bag Design Team Engineers 

 The JSC sleeping bag design team conducted a trade study on sleeping bag design. With 

the goal of improving upon the sleeping bag design currently used on the International Space 

Station (ISS), the team reviewed different sleeping options including COTS (commercial off the 

shelf) and a wide array of sleeping bags (63 in total).  Through this process they down selected to 

a few of the most promising candidates.  Ultimately none of the options fully met the criteria 

specified for the ISS environment.  Two common problems encountered with the candidates 

were that the insulating materials had allergens and were too warm. 

 Prior versions of the spaceflight sleeping bags have featured metallic rings where the 

sleeping bag connects to the wall.  This design created frequent noise complaints.  The new 

sleeping bag rings will be made out of plastic to eliminate this particular issue.  Approximately a 

quarter of the astronauts reported to the design team that use ear plugs to reduce noise levels 

while sleeping. 

 Temperature regulation has been a primary concern in the design of the sleeping bags.  

Most of the time the ISS temperature fluctuates around mid-seventies degrees Fahrenheit.  As a 

result, the sleeping bags that were used on Shuttle (a colder environment) were too warm. 

 American astronauts have been using the Russian sleeping bags for many years on ISS.  

Crewmembers reported some small problems with these bags.  For instance, astronauts would 

cut off some parts of the sleeping bags deemed unnecessary (e.g. straps).  The crewmembers also 

generally reported that these bags were also too warm.  Due to the narrowness of the Russian 

sleeping bag, taller crewmembers reported that there was not enough room in the sleeping bags 

to sleep with the knees up towards the chest, which is one of the favored sleeping positions by 

astronauts.  Despite these issues, the Russian sleeping bag is generally well-liked.  The 

undertaking of designing the new sleeping bag entailed incorporating many of the well-liked 

features in the Russian sleeping bag while adding a few changes and more customization for the 

crew. 

 In researching the sleeping bag re-design, the team found that the Apollo missions were 

the first missions where accommodations were made for the sleep environment.  They found that 

during these missions there were lots of complaints about initial sleep harnesses.  In Space 

Shuttle missions, approximately a third of the crew reported that the most important part of the 

body during sleep to be concerned with was the head, because the head can nod during sleep, 

waking astronauts and creating soreness.  The ability to rotate one's head without tilting while 

strapped is ideal. In discussions with crewmembers, they found that crews tend to not like 

internal restraints (e.g. bungees), but they appreciate external restraints.  External restraints press 

against you, securing the astronaut, and create a feeling closer to that of sleeping in gravity.  

Movement in sleep is important during periods of arousal and too much restraint, may conflict 

with this behavior (possibly why astronauts tend to not use internal straps).  In these discussions, 
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crewmembers requested several modifications to the sleeping bag design.  Based on this 

feedback, the new sleeping bags will feature head restraints and a ventilation flap for feet. 

 Accommodating crew requirements for cleanliness and hygiene was also an important 

component in the re-design of the sleeping bags.  Currently, crewmembers are given their own 

sleeping bags and liners.  The sleeping bags are disposed of after each mission.  The sleeping bag 

liners, like bed sheets, are removable, but are difficult to clean aboard the ISS.  It is much easier 

to simply remove and replace them.  The liners are provided by Russia and there are not always 

enough liners available to accommodate the crew changing them regularly.  Typically, American 

crewmembers use the same liner for approximately 90 days.  The new sleeping bags will be 

provided with liners to be changed every 3-4 weeks. 

 Currently, there are four Crew Quarters aboard the ISS.  As a result, there are not enough 

Crew Quarters for every astronaut that may be present.  This offered unique challenges to 

overcome for the design team.  Sleeping bags in the Crew Quarters do not have to meet the same 

level of flammability safeguards as the sleeping bags outside of the enclosed area. 

 The team noted that the differences in requirements in different areas of ISS highlight the 

importance of planning new hardware specific to a mission.  They speculated that a new design 

would likely be necessary for deep space missions and suggested that long-duration sleeping 

bags might need to be constructed with anti-microbial material in order to maintain cleanliness 

without increasing payload. 

Interview with ISS Crew Quarters and TeSS Engineers 

 ISS engineer SME 1 is an engineer who was involved in the development of the 

Temporary Sleep Station.  This project began as a concept in the engineering discipline for using 

structural material that could be deployed in orbit.  Later they were given a flight project to build 

TeSS using the same concept.  A crew representative was involved in the development process 

and crewmembers looked at the design and provided feedback on it.  TeSS was built and 

certified for spaceflight in approximately nine months, but the entire project from conception to 

deployment took a few years in total.  TeSS was designed to be temporary and installed in the 

laboratory module of ISS. 

 ISS engineer SME 2 was tasked with designing the Crew Quarters (CQ) for ISS.  This 

project began when Node 2 was added to ISS.  ISS engineer SME 2's group had to coordinate the 

development process with contractor teams and the habitability design center team.  In order to 

coordinate effort from these groups, they set up an open, integrated project team, where team 

members could present different aspects of the plan throughout the process.  The space radiation 

group and human factors group contributed to each element of the project.  The acoustic office 

and lighting office evaluated the design plan as well.  These groups would present their 

requirements and then engineering would work to meet the requirements.  The process was 

iterative, with the engineering team creating three prototypes prior to completing the final 

design.  The team delivered four CQ, which were identical, except that two were mirror images 

of each other.  The design plan and implementation was supposed to last two years, but was 

stretched a few months longer, because the CQ was deployed in phases with two CQ deployed 

together and two more being deployed separately during later missions. 

 Despite the rigorous work to create mock-ups for the study, there were no pre-

deployment studies of sleep in either of the sleep stations.  The design teams for both the CQ and 
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TeSS made thorough evaluations of sleep hygiene and habitability concerns through feedback 

generated from the brief experiences of subject matter experts and crewmembers in the sleep 

chambers. 

 Although TeSS and CQ are the same size, TeSS had a larger habitable volume than the 

CQ due to the absence of ductwork in the bulkhead of the chamber.  This change was thoroughly 

evaluated by the engineering teams due to the resultant reduction in habitable volume.  The 

engineers needed to determine how to incorporate five cubic feet of ductwork into the design.  

They considered consolidating it in the “floor” area and the “head” area, as well as along the 

back of the chamber.  The crew indicated that they did not like the ductwork near their head, 

because the perceived habitable volume was smaller.  The final design incorporated all of the 

ductwork in a bump out.  Ultimately the crewmembers reported that the habitable volume of both 

TeSS and CQ was sufficient.  The teams did not systematically collect information regarding 

crew feedback, but they report that they did hear from some crewmembers that there is no need 

to make future CQ any bigger due to the fact that some crewmembers like to use their elbows to 

hold themselves in a desirable location. 

 Temperature regulation was an important consideration for both TeSS and CQ.  Neither 

the TeSS team nor the CQ team gave much consideration to what the crewmembers would be 

wearing, because they considered that crew choice.  Instead, they approached temperature 

regulation by creating a cool ambient temperature in the sleep stations relative to the rest of the 

space station.  The crew debriefing statements suggested that Kayutas (the Russian sleep station) 

was too warm for sleep and as a result, some crewmembers would leave the door to the sleep 

station open, which in turn led to light and sound pollution within the sleep chamber.  For the CQ 

they tried to offer a range of temperature options and it was designed to reach thermal 

equilibrium within 20 minutes. 

 The regulation of airflow within TeSS and CQ was one of the most important issues that 

the engineers faced, due to CO2 washout, but the airflow system also allowed for some 

temperature regulation within both sleep chambers.  TeSS drew air from a vent duct from the 

station air assembly with three speed settings for airflow, but TeSS had no mechanism for 

redirecting air within the chamber.  For the CQ, there were also three speeds, and the direction of 

the airflow could be manipulated by the crewmember.  This functionality was guided by CFD 

modeling for airflow and crewmember perspective on how acceptable the speed and temperature 

was in the mock up. 

 There were many concerns that the developers faced when designing the airflow systems 

for TeSS and CQ.  The primary issue was related to the need to ensure that it was not possible to 

develop pockets of dead air within either chamber.  A second issue was that as they increased fan 

speeds to reduce the temperature, the fans generated increasing noise.  For this reason, they 

designed the three speed controls, so that both an acceptable temperature and sound level could 

be achieved. 

 There were many acoustic requirements that guided the design of TeSS and CQ. The 

lining of the CQ and TeSS were designed to be sound attenuating.  The egress was designed to 

shut securely in order to prevent sound pollution from entering the chamber.  The CQ team 

focused specifically on reducing continuous noise, not on reducing impulse noise.  On ISS, the 

way that modules fit into the racks only allows for loose attachment on orbit.  Therefore, if 
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someone grabs the handrail on the outside of a CQ it could rattle and potentially wake someone 

up. 

 The current lighting in CQ is a general lighting assembly (GLA), however, there are 

plans to deploy a solid-state lighting assembly (SSLA) in the future.  The GLA was designed to 

be dimmed, but it was determined that turning the light down shortens its life.  Due to this 

operational constraint, the deployed GLA could not be turned down, so the designers added a 

fabric shade on rails to go over the light. The fabric shade allows for manual dimming of the 

light. 

 There is also light generated from indicator lights within the CQ.  Originally there were 

six green LED lights that were included in the design, but due to the light intensity with the 

chamber, they reduced the number of lights to just a few.  These lights are near power supply in 

the exit air duct to keep them cool.  There are also emergency egress lights that illuminate over 

the door if there is a power outage or emergency.  During sleep episodes, there is typically one 

crewmember on duty who gets all of the alarms.  Only the light comes on for a Class 1 alarm, but 

Class 2 and Class 3 alarms include an auditory component. 

 There were many considerations made for comfort in both TeSS and CQ.  In the design 

phase the teams considered having different colors for crewmembers, they evaluated materials 

for comfort and hygiene.  Ultimately they decided that all of the chambers needed to be white in 

order to provide for a sufficient light intensity within the chamber.  They chose soft, non-

flammable Velcro squares and provided 120 patches within CQ, however, they have heard that 

some crewmembers sew additional patches into the chamber. 

 The CQ was designed to have easy to clean liners although in theory they could be 

replaced.  The blankets can be cleaned and removed, but each CQ has 60 lbs. of blankets (due to 

the rubber lining that is used to block sound), which creates payload constraints.  The blankets 

often get dirty due to the sloughing of skin during spaceflight and it can be difficult to 

thoroughly clean the blankets.  As a result, the engineering team created duvet covers for the 

blankets, so that each crewmember could have a new, clean surface for sleep.  The Velcro 

patches can be used to hold the blanket in place within the sleep chamber.  Dander and dust can 

build up in the nooks and crannies of the CQ and cleaning is an important part of ensuring 

crewmember comfort and there have been reports of crewmembers doing unscheduled 

housecleaning before they move in, suggesting that cleanliness between individual uses of the 

sleep stations is desirable. 

 The engineering teams also included several features to improve the comfort of the 

crewmembers within the chamber during waking activities, including foot restraints, an arm to 

attach things over the right shoulder, an arm for a computer and an extra power supply. 

 In summary, the development teams have received primarily positive feedback regarding 

the use of TeSS and CQ, suggesting that these types of sleep chambers provide an adequate sleep 

environment during spaceflight. 

Interview with a Skylab Astronaut 

 Astronaut SME 1 is one of nine individuals who spent time on Skylab.  During this 

mission, crewmembers operated on a 24-hour sleep-wake schedule synchronized with each other 

and with mission control.  Occasionally, the astronauts were awake during their scheduled sleep 

episode, but when this happened they remained synced with one another. 
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 The sleep stations within the Skylab sleep chambers had many features.  There was a 

control panel inside the sleep chamber that allowed crewmembers to communicate with mission 

control without leaving the sleep chamber if needed.  There were storage lockers across from the 

sleeping frames that could be accessed while strapped in.  Astronaut SME 1 appreciated this and 

said that crewmembers could conveniently place watches, books, or other personal items there.  

Crewmembers were only allowed to bring six personal items during this mission. 

 No crewmembers swapped sleep chambers during the mission.  Cleanliness of Skylab 

was not an issue during astronaut SME 1's habitation, but it was noted that the third manned 

Skylab mission reported issues associated with cleanliness.  Specifically, the crew mentioned 

that the wardroom and air locks were becoming dirty.  Astronaut SME 1 noted that the sleep 

chambers were sometimes used as brief storage areas for trash, but due to the lining of materials 

and short duration of stowage this did not cause a problem. 

 Astronaut SME 1 did not feel that the personalization of private areas was important on 

this mission.  The mission was not long enough to get “cabin fever” and there was little use of 

private areas besides for sleep. 

 The sleep chambers included bedding for each crewmember.  A sheet was attached to an 

aluminum frame with elastic straps, from which astronauts would strap themselves in to sleep.  

The sleep chamber also included a blanket as well as a soft elastic strap an astronaut could place 

across their forehead to their ear brows to keep the head parallel to the body.  The arms could 

float or be put under straps.  Astronaut SME 1 found this to be comfortable and felt that it 

featured enough stability.  The harnesses were adjustable and astronaut SME 1 did not feel that 

they were irritating to the skin. 

 Astronaut SME 1 spent every night, after the first three, in the sleep chamber and at the 

designated orientation.  Astronaut SME 1 remarked that another crewmember detached his 

aluminum sleeping frame from his sleep chambers and moved it to different places around the 

Skylab habitat during the first week.  After the first week he placed his sleeping frame back in 

the sleeping chamber and remained there the duration of the mission.  This implies that the 

sleeping chambers were the preferable sleeping location aboard Skylab. 

 When asked about the size of the sleeping chambers aboard Skylab, astronaut SME 1 

recalled that it felt fine and was neither too large nor too small.  Astronaut SME 1 also thought 

that it could have been narrower without causing any issues. 

 The crewmembers slept in the command module for the first three nights, because the 

workshop was too hot to sleep in.  This was due to the solar shield being ripped off upon 

Skylab's launch.  Astronaut SME 1 recalled the temperature being around 130 degrees 

Fahrenheit in the workshop where the sleep chambers were located.  The workshop was only 

habitable for a few minutes at a time until the area was cooled.  Once the parasol, a cloth shade 

deployed as a substitute for the heat shield, was deployed over the sunny side of the workshop, 

the temperature slowly began to drop to approximately 80 degrees Fahrenheit.  However, one 

corner of the parasol didn't completely spread out and as a result one corner in astronaut SME 1's 

sleep chamber was a bit warmer.  He reported that this did not disrupt his sleep and that he 

avoided that area. 

 Astronaut SME 1 never felt too hot or too cold during sleep.  He noted that hands could 

get a bit cold, but could be placed under a strap or a blanket to resolve the issue.  The astronauts 
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slept in t-shirts and shorts during sleep.  The command module remained cooler at around 70 

degrees Fahrenheit and the crew sometimes needed a jacket or trousers to stay comfortable in 

that part of the station. 

 Inside the sleeping chambers air flowed from the bottom of the sleep chamber to the top.  

Astronaut SME 1's found the force generated by the airflow to be gentle and was not bothered by 

it.  Astronaut SME did not report any concerns about inadequate airflow. 

 The sleep chambers did not have any windows, removing the possibility of sunlight 

exposure during sleep.  Once the curtain at the side of the sleep station was drawn, there wasn't 

much light in the workshop.  Astronaut SME stated that light wasn't an issue during sleep.  There 

was a small light available to astronauts if needed, or when called from Houston. 

 When Skylab instruments were turned off the sleep chambers were very quiet at 

approximately 50 dB.  The sleeping chambers featured partitions between one another to create 

individual private areas.  The partitions could not open to each other and each had their own exit.  

Despite the partitions only being a privacy barrier and not a sound barrier, astronaut SME 1 

stated that disruption due to other crewmembers was not an issue.  No crewmembers on 

astronaut SME 1's mission snored, but if they had, astronaut SME 1 felt that could have been an 

issue.  If crewmembers got up and left the sleep chamber quietly during the sleep episode, then 

others would not wake.  However, the waste management system was loud and would wake 

other crewmembers when used. 

 A reoccurring issue started during one sleep episode, where a loud banging noise woke 

all three crewmembers.  The source of the noise took a few days to identify with the help of 

mission control.  They found that the noise was emanating from the exterior aluminum panels 

which were springing out when heated and sprang back when cooled, making a loud noise. 

Interview with a SMEAT and Shuttle Astronaut 

 Astronaut SME 2 was a part of the Skylab Medical Experiments Altitude Test (SMEAT), 

a high fidelity ground simulation of the environment in Skylab.  Additionally, astronaut SME 2 

flew on three separate Shuttle missions, the first as pilot and the last two as commander.  Each 

Shuttle mission was aboard a different vehicle (Challenger, Discovery, and Atlantis).  In total, 

astronaut SME 2 logged 386 hours in space. 

Experience with SMEAT 

 Astronaut SME 2 felt that the analog environment was helpful in the knowledge gathered 

related to noise, temperature, and comfort, despite the limitations related to gravitational 

differences.  SMEAT was depressurized to a level of 5 psi.  The depressurization affected 

speech, but astronaut SME 2 did not feel it affected sleep.  The SMEAT sleeping environment 

included two sleeping cots in one room, separated by a curtain partition.  One of the 

crewmembers slept in a different area, on the other side of an airlock. 

 Astronaut SME 2 slept horizontally on a bunk within the airlock, choosing not to use the 

sleep restraints that were available and nor modifying the bunk in any manner.  Astronaut SME 2 

stated being a very good sleeper and can fall asleep anywhere.  Astronaut SME 2 did not recall 

any notable issues with temperature, airflow, light or noise during the SMEAT. 
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Experience with The Space Shuttle. 

 Astronaut SME 2 reported that the habitable volume of space was reduced from the 

beginning to the end of a mission, as it was burdensome to place everything back in lockers after 

they had been removed.  As a result, many objects were stored in various locations throughout 

the Shuttle.  In addition, the size of the crew impacted the amount of habitable space.  Astronaut 

SME 2 recalled that on one flight, which included seven crewmembers, feeling the presence of 

the reduced living space.  There were also differences between the shuttles, which changed the 

usable space in the shuttle; for example, Columbia included a large cabinet that reduced its 

habitable volume.  Astronaut SME 2 reported never having any problems sleeping in the open 

environment aboard Shuttle.  As commander, astronaut SME 2 would allow the crew autonomy 

to choose their preference of sleep locations.  Astronaut SME 2 noted that crew members would 

personalize their environment by bringing things like college flags, which they would hang in the 

lower deck. 

 On astronaut SME 2's first mission, he slept tethered to the wall in the middeck.  On the 

following two missions astronaut SME 2 preferred to be in the commander's chair in the flight 

deck.  Astronaut SME 2 reported sleeping in the chair, with the buckle loosened and all of the 

straps stretched out, which was likened to "floating in a cage."  Unlike reports from some other 

crewmembers, astronaut SME 2 did not have any issues related to head movements during sleep 

periods. 

 Astronaut SME 2 recalled that during the first mission the thermostat didn't work very 

well and had to be manually adjusted.  Although there was difficulty remembering if it was too 

warm or too cool, astronaut SME 2 reported often sleeping with a jacket on and that the 

temperature was not too much of an issue.  Astronaut SME 2 felt that blankets were less useful 

compared to wearing a jacket.  Astronaut SME 2 did not recall any issues related to air flow 

during the Shuttle missions. 

 Astronaut SME 2 reported usually wearing a sleeping mask to limit light exposure during 

sleep.  Although the Shuttle included shades to cover the 10 windows, covering the windows was 

often seen as a difficult chore and generally at least some of the windows were left uncovered.  

Sleep masks were used by most crewmembers instead of covering the windows as a more 

convenient alternative. 

 Astronaut SME 2 reported that the background ambient noise level was not disturbing to 

sleep.  The crew would often turn off fans to turn off the CO2 canisters behind them, which 

created a very quiet sleep environment.  Although it could be difficult to communicate from the 

flight deck to the bottom deck, over background noise, it could be done with some effort and was 

made easier while looking down the hatch.  There was generally not an issue communicating 

with crewmembers due to ambient noise. 

 The teleprinter, which was used to receive directives from Mission Control, would start 

printing two orbits before wake time so that Mission Control would have time to send another 

message if the first one failed prior to the crew starting their day.  Astronaut SME 2 reported that 

the printer was very loud and receiving messages would be disruptive to sleep and would wake 

astronauts.  Astronaut SME 2 did not recall any noise issues related to waste management use by 

other crewmembers during sleep periods.  Astronaut SME 2 also stated choosing not to use 

earplugs during sleep as well. 
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 Astronaut SME 2 recalled being awoken by other crewmembers on several occasions.  

One recalled experience was when astronaut SME 2 was sleeping in the commander’s chair and 

was awoken several times from sleep by a clicking and buzzing noise that emanated from other 

crewmembers cameras.  Astronaut SME 2 reported that the astronauts would come and go to 

take pictures of Earth as the end of the mission was approaching and it was "the last chance to 

see Earth." 

 

Interview with a NEEMO, Shuttle, and ISS Astronaut 

 Astronaut SME 3 has flown on three Shuttle missions, been a part of one ISS Expedition, 

and led one NEEMO mission.  In spaceflight missions, astronaut SME 3 worked as a mission 

specialist, flight engineer, and science officer.  Astronaut SME 3 played a critical role in the 

building of Crew Quarters and contributed to several other habitability improvements to the ISS.  

Astronaut SME 3 has extensive experience with a wide range of sleeping environments. 

NEEMO 

 During NEEMO missions aboard the underwater station, Aquarius, the sleeping quarter 

was a single room featuring three bunk beds on either side of the room with no dividers between 

sleeping locations.  Aquanauts had their own bed and there was no "hot bunking."  The six 

aquanauts living in close quarters in Aquarius made differences in individual's habits (e.g. 

preferred sleeping times) central to habitability concerns.  One of the challenges in Aquarius was 

managing of belongings.  Astronaut SME 3 stated that one of the important things to learn is how 

to "manage your stuff." "What do you want in your personal space? How are you going to 

manage your clothes/hygiene items? What did you need handy?" 

 Astronaut SME 3 reported being a light sleeper and stated a tendency to not need much 

sleep.  Astronaut SME 3 did not have trouble sleeping, but felt it was very important to not 

disturb others who may have longer sleep needs.  Astronaut SME 3 slept on a top bunk and 

would have to climb down over other aquanauts when needing to use the restroom during a 

sleeping period, which involved going into the water as the waste area was outside the immediate 

habitat. 

 The station was cluttered due to the amount of equipment present and there was minimal 

space for personal belongings.  Although not as clean as Shuttle, Aquarius was not particularly 

dirty, astronaut SME 3 likened it to more like a submarine.  Hygiene was not a concern and there 

was a checklist for routine cleaning.  Conscientiousness was important in dealing with 

cleanliness and the limited space, as was working within a team.  The dynamic of a bunk room 

could be a problem with several individuals on different sleep schedules in the same space.  

Managing personal belongings can be a big issue and there must be space for individuals to store 

personal items.  In addition, mixed gender crews may require accommodations for private spaces 

to change.  Astronaut SME 3 found that it could be challenging to find a place to change.  

However, the close proximity was not felt to be too much of a problem.  Given the short nature 

of the mission, astronaut SME 3 said it felt similar to camping.  Astronaut SME 3 speculated that 

for longer missions the need for personal space would become greater.  Astronaut SME 3 stated 

that from a psychological standpoint, it is reassuring to have your own space with your own 

belongings that you control. 
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 Astronaut SME 3 did not recall having any issues with airflow or quality.  Astronaut 

SME 3 did not experience any headaches or any other ailments that could be attributed to air 

quality. 

 Astronaut SME 3 stated both that Aquarius was a cold environment and also a tendency 

to be cold in environments where others feel fine.  Astronaut SME 3 reported difficulty sleeping 

with cold feet, which was sometimes the case on Aquarius.  There were no accommodations for 

modifying the sleep environment on Aquarius, so individuals were required to anticipate their 

needs.  Astronaut SME 3 noted that access to an extra blanket or pair of socks may have 

facilitated better sleep for some crewmembers. 

 There was no sound attenuation on Aquarius and the bunk room was separated from the 

habitation room by a curtain, making it possible for noise generated by crewmembers in the 

habitation area to disturb the sleep of those sleeping in the bunk room.  Astronaut SME 3 

highlighted the issue of individual differences posing a problem in this situation.  Astronaut SME 

3 noted that some crewmembers who preferred a later sleep schedule could disrupt the sleep of 

crewmembers who preferred an early sleep schedule and vice versa.  As a result, if a 

crewmember wanted to sleep it was important that other aquanauts tried to be quiet. 

 Astronaut SME 3 does not recall any issues with snoring crewmembers, but noted that 

this could have been an issue given the open sleeping environment.  Outside of aquanauts talking 

and moving throughout sleep periods there were no other issues reported relating to noise. 

 Within the sleep environment, light would come through the curtain, which partitioned 

the bunk room from the rest of station.  Astronaut SME 3 did not feel this was an issue 

personally, though it may have had deleterious effects on sleep quality for some of the 

aquanauts.  Astronaut SME 3 did not use an eyeshade during sleep, but noted that some of the 

other crewmembers did choose to wear one. 

Shuttle 

 All crewmembers slept inside the middeck for all of astronaut SME 3's Shuttle missions.  

Astronaut SME 3 slept with a sleeping bag attached to a Shuttle wall.  Astronaut SME 3 felt it 

was helpful to feel constrained and a tendency to sleep on his/her side.  It was noted that on 

Shuttle it wasn’t possible to fasten one's self as tightly as on the ISS.  Astronaut SME 3 indicated 

a preference to restrain the head during sleep. 

 During the Shuttle missions astronaut SME 3 found that other crew members tended to 

go to bed earlier than s/he did.  Astronaut SME 3 stated not sleeping very well on first mission.  

However, astronaut SME 3 felt the body adapted and remembered the last visits to space and on 

later missions astronaut SME 3 slept much better.  However, astronaut SME 3 reported feeling 

fatigued by flight day six or seven. 

 Astronaut SME 3 preferred to sleep near the galley, because it was the warmest place on 

the Shuttle.  Astronaut SME 3 noted that the galley was “shut down” during scheduled sleep 

episodes, so that other crewmembers could not use it. 

 Astronaut SME 3 recognized a personal sensitivity to noise during sleep.  As a result, 

astronaut SME 3 brought a noise-cancelling headset for the last mission in order to block out 

noise during sleep. 
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 The crew always used the window covers on the middeck, which removed light from the 

sleep environment.  Astronaut SME 3 reported that there were no issues with instrument lights 

disturbing sleep. 

International Space Station 

 Astronaut SME 3 had several experiences sleeping on ISS.  On two occasions astronaut 

SME 3 spent time on ISS as a visiting Shuttle crewmember and was an ISS crewmember for one 

expedition.  Each of these experiences was associated with unique sleep habitability experiences. 

 After docking with the ISS during one shuttle mission, astronaut SME 3 reported that 

there were not many sleeping locations available due to the large crew size (6 astronauts from 

Shuttle, 3 from ISS expedition).  Astronaut SME 3 slept in a Shuttle sleeping bag in Node 2 and 

attached bungee cords to handrails along the module floor in order to stay connected to a flat 

surface.  Astronaut SME 3 chose this location because it was close to the Shuttle.  On astronaut 

SME 3's last Shuttle mission, which was after an ISS expedition, astronaut SME 3 slept inside 

the Japanese Experiment Module for one night and spent two nights in the European Module.  

Astronaut SME 3 used prior ISS experiences to guide the decision of a sleep location for this 

mission and chose the JEM and European modules to avoid sleeping in areas where 

crewmembers might be moving through (e.g. to use a toilet) during the sleep episode.  Astronaut 

SME 3 ultimately left the JEM because the shutters over the windows in JEM had light coming 

through which was a problem during sleep. 

 During astronaut SME 3's stay aboard the ISS, during the expedition, there were only 

three crew members present for most of the time, which meant that there was a large habitable 

volume available for each person.  Astronaut SME 3 slept inside of Temporary Sleep Station 

during Expedition 18.  One of astronaut SME 3's tasks was to help construct Crew Quarters 

(CQ), which was to be an additional sleeping environment. 

 Overall, astronaut SME 3 felt that TeSS was an excellent sleep environment, particularly 

due to its' warmer sleep environment.  The temperature inside TeSS was warmer than that of CQ, 

which astronaut SME 3 found to be too cold.  Astronaut SME 3 strongly preferred to be warm 

upon initiation of sleep and developed strategies to warm up prior to sleep episodes.  For 

example, astronaut SME 3 would often put his/her feet between two CPU fans to warm them up 

or would enter the sleeping bag early to achieve warm feet. 

 Astronaut SME 3 reported that TeSS was "more cozy" and provided a smaller habitable 

volume than CQ, but this was not an issue.  Astronaut SME 3 reported having no issues keeping 

TeSS or the sleeping bag clean.  Astronaut SME 3 also did not feel that the airflow inside of 

TeSS was an issue and preferred the softer airflow of TeSS to the strong airflow in CQ, which 

made the CQ chamber cooler.  Astronaut SME 3 noted that crewmembers sleeping in the 

Russian Kayutas often complained of the chambers being too hot for sleep, which required them 

to leave the doors to the sleep stations open to increase airflow and cool down the chambers.  

This eliminated the sound attenuation and would allow for disruption to noise due to other 

crewmembers passing by to use the waste management system. 

 In comparison to Aquarius, astronaut SME 3 felt the visits to ISS did not involve as much 

noise pollution from other crewmembers due to the large volume of the station and relatively few 

crewmembers sharing the space.  Astronaut SME 3 reported that during the ISS expedition it was 

generally quiet during sleep periods.  Despite this, there were occasional noises generated by 
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crewmembers and a mix of continuous and erratic noise emanating from station systems.  

Astronaut SME 3 reported discovering a sensitivity to noise during sleep while aboard the ISS.  

Astronaut SME 3 reported experiencing disrupted sleep due to noise for two weeks aboard ISS, 

but then started wearing a noise-cancelling headset, made available for making phone calls.  

Astronaut SME 3 found that this greatly improved sleep quality and duration.  Astronaut SME 3 

reported having no problems wearing the headset and hearing alarms.  Astronaut SME 3 noted 

that an alarm clock would be attached to the headset to wake him/her and that there was no issue 

related to not hearing ISS alarms due to them being "long, loud, and annoying."  Astronaut SME 

3 also noted not realizing noise would be a problem before experiencing sleep disruption due to 

noise and was glad that the noise-canceling headsets were available to modify the sleep 

environment. 

 Astronaut SME 3 highlighted the importance of the sleep chamber as serving the need for 

privacy during long-duration missions.  Astronaut SME 3 noted that due to space constraints, 

TeSS would be used for bathing at times.  Astronaut SME 3 also reported that having one's own 

space was also important for personal time, which might include reading or talking to a family 

member on Earth. 

 Astronaut SME 3 noted that how belongings are managed is very important.  Astronaut 

SME 3 stored some essential belongings within TeSS and then kept surplus items in cargo 

transfer bags (CTB).  Astronaut SME 3 noted that there were wide individual differences 

associated with the management of belongings.  For example, astronaut SME 3 would roll up all 

clothing in an organized way and would put hygiene-related items in zip lock bags.  Astronaut 

SME 3 noted that others would tie their belongings to a string and let it float outside of CQ. 

 Astronaut SME 3 also described how individual differences in sleep preferences affected 

scheduling activities.  Astronaut SME 3 noted that some individuals preferred to go to sleep late 

and wake up at the scheduled wake time.  In contrast, astronaut SME 3 typically woke before the 

scheduled wake time.  As a result there was often a crewmember awake while others were 

asleep.  Astronaut SME 3 would arrange movement aboard the ISS in order to not disturb other 

crewmembers on a different wake-sleep schedule.  Astronaut SME 3 stated choosing not to use 

the treadmill in the morning because it was next to the CQ for other crewmembers.  Due to being 

concerned that going to the galley in the morning might lead to waking other crewmembers, 

astronaut SME 3 would bring breakfast to TeSS in the evening to avoid bothering the other 

crewmembers who were sleeping. 

Interview with a Spaceflight Psychologist 

 Psychologist SME is a spaceflight psychologist at NASA.  Psychologist SME has 

supported spaceflight missions for Mir, Shuttle, and the ISS.  Psychologist SME also has 

extensive experience supporting missions in analog environments.  Psychologist SME has been 

involved in astronaut selection, training, in-flight monitoring, and debriefing crewmembers.  

 Psychologist SME reported that one of the central issues associated with habitability is 

that everyone does things at different times.  Psychologist SME noted that often astronauts do 

not have control of their sleep space.  Psychologist SME reported hearing that crewmembers 

have distracted one another by moving around while others were sleeping.  

 Psychologist SME reported feeling that hammocks were not as good as sleep stations for 

long duration missions.  Psychologist SME said that sleep stations are not just for sleep; they are 
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a private area where an individual can have some control over his or her environment.  

Psychologist SME emphasized that having a private sleep station allows a sense of control, by 

having a place where no one else goes.  Psychologist SME noted that having personal space is 

often a coping mechanism for living in confined spaces.  Psychologist SME suggested that 

introverted individuals may be good candidates for long-duration missions, but that such 

individuals will need to be able to control their level of social interaction and having individual 

quarters will allow for that privacy.  Within a shared sleep space, individual differences can be 

amplified and can lead to tensions and irritability between the crew.  Psychologist SME felt that 

shared sleep space would likely not be a workable option for long-duration spaceflight. 

 When asked about the availability of sleep stations leading to individuals self-isolating, 

psychologist SME reported that the benefit/risk ratio does not benefit getting rid of sleep 

stations.  Psychologist SME said that individuals should not use private spaces to isolate 

themselves as a response to interpersonal problems.  Crewmembers should aim to resolve issues 

with each other, especially with a team leader.  Psychologist SME also noted that one cannot use 

engineering to force team cohesion. 

 Psychologist SME noted that while individuals may take actions for noise cancelling 

during sleep, it is important they do not block out so much noise that they cannot hear alarms and 

ground call-ups, which are lower in volume than alarms.  Psychologist SME said that having the 

option to turn on white noise may be helpful for buffering noise for some crewmembers during 

sleep. 

 Psychologist SME felt that the position for sleep in space is important.  Psychologist 

SME said that crewmembers have to work to test different options to find a sleep position 

strategy that works (e.g. crunching up in a corner, use of bungees/harnesses while on back, etc). 

Mir 

 Crewmembers on Mir had sleep stations, but psychologist SME reported that the 

astronauts did not tend to have very good sleep on Mir.  Psychologist SME likened sleep on Mir 

to ‘sleeping in a car in a sketchy neighborhood versus sleeping in a car in your own driveway.’  

Psychologist SME said that there were frequent, sometimes very serious alarms and emergencies 

that occurred on Mir.  Some of these alarms and emergencies included loss of power, going into 

free drift, and fires.  In many cases the meaningful alarms were directly related to habitability.  

Psychologist SME stated that the need to feel secure in an environment is important. 

 Due to a crash with the Progress M-34 space vehicle and Mir's module Spektr, one 

astronaut lost his sleep station along with personal belongings.  Psychologist SME emphasized 

the importance of contingency planning for situations where sleep quarters may be lost.  

Psychologist SME suggested that even a portable sleep space should have some control of light, 

ventilation, and noise. 

ISS 

 Psychologist SME reported that the astronauts are better rested on the ISS than they were 

on Shuttle or Mir and this is a direct by-product of their habitable environment.  In early 

missions, when ISS was being constructed, astronauts were often extremely sleep deprived.  

Psychologist SME reported that the crew quarters on ISS are used not just for sleep, but for 
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making personal calls, bathing, changing, and having alone time.  Psychologist SME felt the 

privacy afforded by the ISS sleep stations would be essential for deep space missions. 

 Sleep is now generally recognized by crewmembers as being incredibly important. 

However, the scheduling of work is a big threat to quality sleep on ISS.  Psychologist SME feels 

that more can be done to account for the way individuals and teams interact with their 

environment.  Psychologist SME reported that mission support personnel have not progressed to 

being able to address individuals sleep needs, although they are known to exist.  For example, 

long versus short sleepers are not yet managed well with respect to expectations on the part of 

the mission support teams.  Psychologist SME reported that this could change if productivity was 

the outcome that mission support managed rather than the timeline.  Similarly, psychologist 

SME noted that it is sometimes a problem when people require very little sleep, because the 

individuals will get up and work out, but then they throw off the schedule.  Occasionally short 

sleepers feel under loaded with work.  Long sleepers can feel guilty in that they need 8-9 hours 

of sleep a day.  Longer sleepers can also feel obliged to stay up and help a short sleeper work, 

leading to the accumulation of sleep debt. 

 Psychologist SME felt that it would be good for individuals to experience 2-3 nights 

sleeping with a tape of the current noise environment on ISS.  Psychologist SME said that 

anything you can teach someone about sleep to protect their future sleep is very important, 

especially to work out coping mechanisms. 

Analog Environments 

 Analog environments are useful for studying sleep habitability.  Psychologist SME 

reiterated that personal space is very important in analog environments.  Having one's own space 

where people don't trespass on is a human need and coping mechanism.  If a habitat needs to be 

rearranged for any reason, a new personal space should be designated.  Psychologist SME said 

that individual compartments are more important for long-term missions. 

Psychological Impact of Sleep 

 Psychologist SME reported that sleep is a foundational component to living and working 

in a team.  Psychologist SME said that if one isn’t getting enough sleep it can extend to all 

fronts.  Points of natural division or desynchrony within the crew like culture, gender, 

military/non-military can reduce sleep and cause more splitting along natural fault lines.  

Personality and irritability increases without sleep.  Sleep helps avoid problems that occur in 

other areas, such as intra-team relationships.  Sleep also helps maintain a sense of self and a 

sense of effectiveness. 

RECOMMENDATIONS 

 The sleep environment required for long duration missions will differ from the sleep 

accommodations that NASA has developed in the past.  Our review revealed several 

modifications that will be important to make in order to ensure that deep space crews have sleep 

environments that will provide them with quality sleep. 

 The location of the sleep station within the vehicle is key to reducing noise and light 

pollution.  Many of the individuals that we interviewed reported that their sleep had been 

disrupted due to the proximity of a sleeping area to a common area (Hoffman 2002; Astronaut 

SME 3 interview; Aviator SME interview; Navy SME interview; Oilrig SMEs interview).  Given 

that there are individual differences in sleep timing preference, it is likely that some crew will 
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chose to be awake, while others are asleep (Yan and England 2001; Basner et al. 2013; Astronaut 

SME 3 interview; Aviator SME interview; Navy SMEs interview).  In order to ensure that 

morning-types and evening-types are both afforded adequate rest, it is desirable to position crew 

quarters away from the galley area and exercise machinery. We also found that individuals 

reported experiencing sleep disruption due to other crewmembers using the waste management 

system during scheduled sleep (MSFC Skylab Structures 1974; Yan and England 2001; IFALPA 

2013; Astronaut SME 3 interview; Aviator SME interview; Navy SMEs interview).  The waste 

management system should be located far enough away from sleeping quarters that noise is 

buffered, but close enough that crewmembers are able to quickly access the facility and return to 

sleep without having to travel too far.  It may be appropriate to locate waste management 

facilities in a module adjacent to the sleep stations. 

 It is likely that watch schedules will be necessary during deep space missions.  We found 

that in the early history of human spaceflight, watch schedules were very disruptive to sleeping 

crewmembers due to the close proximity of the sleeping crewmember to the “on watch” 

crewmember (Hacker and Grimwood 1977).  According to our interviews and studies of military 

personnel and pilots, locating the sleep chambers for off-duty crewmembers away from the 

command and communication area is desirable (Caldwell et al. 2000; Watt 2009; IFALPA 2013; 

Green 2015; Astronaut SME 2 interview; Navy SMEs interview; Oilrig SMEs interview; 

Psychologist SME interview).  However, the sleep chambers should be positioned near enough 

to the vehicle command center that crewmembers may quickly respond in an emergency 

situation (IFALPA 2013). 

 It is imperative that each crewmember is provided with a private sleep chamber for the 

duration of the mission.  We found that shared sleep spaces or common bunkrooms are 

associated with frequent sleep disruption due to other crewmembers (Caldwell et al. 2000; 

Astronaut SME 2 interview; Astronaut SME 3 interview; Navy SMEs interview; Oilrig SMEs 

interview).  The practice of “hot bunking” has been virtually eliminated from all occupations that 

we evaluated due to hygiene concerns and the impact that hot bunking has on psychological 

mood and health (Stuster 1986; Caldwell et al. 2000; Navy SMEs interview; Oilrig SMEs 

interview).  All of those whom we interviewed agreed that private quarters should be available 

for individuals during long duration missions.  We found that subject matter experts viewed their 

sleep location not just as a place for sleep, but also as their only space for privacy (Johnston 

1973; Willshire 1984; Stuster 1986; Koros et al. 1993; Carrere and Evans 1994; Vander Ark et 

al. 1994; MacCallum and Poynter 1995; Rosekind et al. 2000; Hoffman 2002; Weiss et al. 2007; 

Hendrickx 2002; Green 2015; Astronaut SME 3 interview; Oilrig SMEs interview; Psychologist 

SME interview).  Access to a private space was viewed as critical to the psychological well-

being of individuals living in isolated and confined environments (Astronaut SME 3 interview; 

Oilrig SMEs interview; Psychologist SME interview).  Similarly, provision for storage of 

personal items within the sleep chamber was viewed as highly desirable (Yan and England 2001; 

Yan 1998; Astronaut SME 1 interview; Astronaut SME 2 interview; Astronaut SME 3 interview; 

ISS engineer SMEs interview; Navy SMEs interview; Oilrig SMEs interview; Psychologist SME 

interview).  In addressing this issue, the recommended minimum habitable volume for extended 

duration missions (i.e. longer than one year) was determined to be 25 m3 (883 ft3) per person; 

Whitmire et al. 2015).  Additionally, the consensus panel recommends 5.4 m3 per crew quarter 

since, while the size of the ISS crew quarters is often regarded as adequate, the current volume is 

based on a 4 to 6-month mission and relative to a much larger vehicle.  For exploration missions, 

given the unprecedented distance, the relatively small-sized vehicle, and the resulting need for 
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increased privacy, a recommendation for the near doubling in size of the crew quarters to 5.4 m3 

was made (Whitmire et al. 2015).  These recommendations were derived using a specified set of 

assumptions and parameters including variables related to crew demographics and size, 

autonomy from mission control, and duration.  A critical assumption in this recommendation is 

that crew members need more space as missions become longer, a sentiment reflected in our 

SME interviews.  The sleep chambers for deep space vehicles should also allow crewmembers to 

customize the space with personal items and reconfiguration of stowage compartments (Yan and 

England 2001; Astronaut SME 3 interview; ISS engineer SMEs interview; Navy SMEs 

interview; Psychologist SME interview). 

 There have been situations where crewmembers have been displaced from private 

quarters during spaceflight missions (Psychologist SME interview).  In these situations it is very 

difficult for the displaced individuals to obtain adequate sleep (NASA 1970; NASA 1971; 

Shephard Jr. 1972; Aviator SME interview; Psychologist SME interview).  Given that the loss of 

a sleep chamber would likely also be associated with a breach of the spaceflight vehicle, the 

resulting anxiety may further reduce crewmember sleep quality and quantity.  As a result, it is 

possible that the loss of a sleep chamber could greatly impact the physical and psychological 

health of crewmembers at a time when successful performance of duties is essential.  Given the 

importance of sleep in conferring fitness for duty, future crew vehicles should include back up, 

deployable sleep chambers in order to ensure that individuals have access to a private sleep 

environment throughout the mission. 

 The crew quarters that are presently on ISS appear to provide enough habitable volume 

for crewmembers to move as desired during sleep (Broyan Jr. et al. 2008; Allen and Denham 

2011; Astronaut SME 3 interview; ISS engineer SMEs interview).  We found one case where a 

crewmember was too large to fit in the assigned sleep chamber during spaceflight (Bluth and 

Helppie 1986).  We also found that the current Russian sleeping bags are too narrow for 

individuals to move as desired (Sleeping Bag SMEs interview).  Although it may be necessary to 

design all sleep chambers and sleeping bags to the same standard, it is important to consider that 

larger crewmembers will have less habitable volume relative to smaller crewmembers.  As such, 

it is important to ensure that the crewmembers selected for a deep space mission are able to 

evaluate the size of the sleep stations in advance of the mission.  It may also be desirable to 

design two sizes for the sleep stations to accommodate larger and smaller crewmembers. 

 The optimal sleep environment for a planetary excursion will be necessarily different 

from the optimal sleep environment for spaceflight.  During a long-duration planetary excursion, 

larger crew quarters are necessary due to the comparatively reduced habitable space available in 

a partial gravity environment.  We found that individuals living in isolated and confined 

environments on Earth use their sleep rooms as a place for privacy and to work in addition to 

sleep (Yan et al. 1998; Hoffman 2002; ESA 2010; Oilrig SMEs interview).  As a result, the crew 

rooms on a planetary excursion should include space for a bed (placed horizontally on the floor), 

a desk and storage of personal belongings.  The use of bunkrooms or shared sleep spaces is only 

appropriate for a short-duration planetary excursion.  In these cases, bunks or cots may be used 

to accommodate crewmembers (Hoffman 2002; Astronaut SME 1 interview; Astronaut SME 2 

interview; Astronaut SME 3 interview); however, even during such short excursions private crew 

quarters would be preferable (Yan et al. 1998). 

 Sleep chambers in spaceflight and on the ground must include features that protect 

individuals from being awoken by external forces such as light, noise, inadequate temperature 
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and poor air quality.  Light is the primary resetting cue for the human circadian pacemaker 

(Czeisler and Gooley 2007).  Exposure to light at inappropriate times leads to circadian 

misalignment, which causes sleep disruption (Flynn-Evans et al. 2016).  Similarly, exposure to 

light is alerting and suppresses the drive to sleep (Lockley et al. 2006).  The intensity, spectra, 

duration, and timing of light determine the magnitude and direction of phase shifting and 

potency of acute alerting (Lockley 2005).  All wavelengths of light have a negative impact on 

sleep, but blue light elicits the strongest effect due to the stimulation of intrinsically 

photosensitive retinal ganglion cells (Lockley et al. 2003).  Exposure to green light is capable of 

enhancing alertness and suppressing sleep (Lockley et al. 2006), while exposure to red light has 

the weakest effect on alertness and circadian phase shifting (Mien et al. 2014).  Evidence from 

the laboratory, field and subject matter experts support the notion that exposure to light during 

sleep episodes is disruptive to sleep quality and quantity (NASA 1971; Hacker and Grimwood 

1977; Potter et al. 1998; Caldwell et al. 2000; Dijk et al. 2003; Bierman et al. 2011; Figueiro and 

Rea 2012; Cho et al. 2013; Grandner et al. 2013; Figueiro et al. 2014; Thompson et al. 2014; 

Zeitzer et al. 2014; Green 2015; Astronaut SME 3 interview).  Based on this evidence, all light 

should be eliminated from the sleep environment.  If indicator lights are necessary for identifying 

egress points, then they should be dim and red (Mien et al. 2014). 

 There is strong evidence to suggest that individuals living in isolated and confined 

environments away from typical solar light dark cues are prone to circadian desynchrony due to 

self-selecting inappropriate patterns of light exposure (Kleitman 1965; Halberg et al. 1970; Siffre 

1988; Miller and Nguyen 2003; Arendt 2012; Basner et al. 2013).  This circadian misalignment 

leads to individuals experiencing a drive to sleep during scheduled wake and an inability to sleep 

during scheduled sleep opportunities.  In order to preserve a stable 24-hour pattern of work and 

sleep among the crewmembers, it may be desirable to provide a strong cycling of light and 

darkness in common spaces to mimic the solar light dark cycle and help crewmembers maintain 

a regular sleep-wake schedule and circadian entrainment (Duplessis et al. 2007; Young et al. 

2015; Navy SMEs interview; Oilrig SMEs interview).  However, if such a strategy is utilized, it 

is important that crewmembers maintain some autonomy in controlling dimmer, personal 

lighting as would be the case at home on Earth.  Similarly, crewmembers scheduled to be on 

night watch may benefit from supplemental lighting in the vehicle command center in order to 

enhance alertness and performance (Barger et al. 2014). 

 Noise is ever-present on space vehicles.  We found that noise has been a major cause of 

sleep disruption throughout the history of spaceflight (NASA 1971; Johnston 1973; Hacker and 

Grimwood 1977; Flynn-Evans 2010; Astronaut SME 1 interview; Astronaut SME 2 interview; 

Astronaut SME 3 interview; Psychologist SME interview).  The current guidelines allow for 

exposure to continuous noise above the WHO recommended guidelines (Broyan et al. 2008; 

World Health Organization 2009).  In addition, the current NASA guidelines do not provide 

mitigations against impulsive or intermittent noise (Broyan et al. 2008; ISS engineer SMEs 

interview).  We found that exposure to intermittent noise is at least as disruptive to sleep as 

continuous noise exposure (NASA 1971; Johnston 1973; Hacker and Grimwood 1977; Watt 

2009; Flynn-Evans 2010; Fyhri and Aasyang 2010; IFALPA 2013; Schmidt et al. 2013; 

Astronaut SME 1 interview; Astronaut SME 3 interview; Navy SMEs interview; Oilrig SMEs 

interview).  Given this evidence, exposure to noise be limited to below 35 dB, because exposure 

to noise above this level is associated with a reduction in sleep quality and quantity, even when 

individuals do not wake fully (World Health Organization 2009).  In addition, intermittent noise 

should be minimized, so that it does not vary beyond 5 dB from background noise levels.  There 
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is some evidence to suggest that exposure to continuous white noise less than 25 dB is sufficient 

to mask intermittent noises (Stanchina et al. 2005), therefore it is desirable to allow 

crewmembers access to white noise in their sleep chamber if desired.  Earplugs and/or noise 

canceling headphones should also be made available for crewmembers (DOA 2009; Legler and 

Bennett 2011; Astronaut SME 3 interview; Aviator SME interview; Oilrig SMEs interview).  

Due to crewmember concerns about missing alarms while wearing earplugs, it may be desirable 

to develop multi-sensory alarms that include auditory and visual stimulation (Kawada and 

Suzuki 1999; Muzet 2007; Rechtschaffen 1966; Navy SMEs interview; Oilrig SMEs interview; 

Psychologist SME interview). 

 Early space vehicles have varied greatly in ambient temperature.  For optimal sleep, an 

individual needs to reach his or her thermoneutral equilibrium and should have sufficient 

bedding available to create a microclimate of between 25-35˚C (77-95˚F; Okamoto et al. 1998; 

Okamoto-Mizuno et al. 2003; Astronaut SME 3 interview).  Given that there are wide individual 

differences in the optimal temperature for sleep, the sleep environment on future space vehicles 

should be cool, but there should be sufficient insulation available for crewmembers to modify 

their environment to suit individual preferences (Haskell et al. 1981; Lin and Deng 2008; 

Häuplik-Meusburger 2011; Astronaut SME 2 interview; Astronaut SME 3 interview; Navy 

SMEs interview).  This may mean providing crewmembers with sleeping bags of different 

thicknesses, or a mechanism for layering sleeping bags together.  It is also desirable for sleeping 

bags to include vents to release heat, because the human core body temperature falls and rises 

during a typical sleep episode (Van Someren et al. 2002; Sleeping Bag SMEs interview).  

Warming of proximal and distal skin temperature has been associated with faster sleep onset 

(Kräuchi et al. 1999; Raymann et al. 2005; Raymann et al. 2008) and crewmembers have 

reported having difficulty sleeping due to cold feet and hands (Johnston 1973; Bluth and Helppie 

1986; Astronaut SME 1 interview; Astronaut SME 3 interview), therefore providing a way for 

crewmembers to warm their extremities prior to sleep may be desirable. 

 The level of humidity in the environment can also influence sleep quality and quantity.  

The optimal humidity range for human health is between 40-60% (Johnston 1973).  The presence 

of humidity in the environment changes the perceived temperature.  Higher humidity, with high 

temperatures are disruptive to sleep (Okamoto-Mizuno et al. 2005).  Therefore, lower humidity 

of 50-60% is optimal for sleep, particularly when ambient temperature is increased. 

 The optimal ambient gas mixture for sleep is equivalent to the air experienced at sea level 

on Earth (78% nitrogen, 21% oxygen, 1% other gases; Robin et al. 1958; Reite et al. 1975; Gothe 

et al. 1981; Stuster 1986; Schiffman et al. 1983; Selvamurthy et al. 1986; MacCallum and 

Poynter 1995; Salvaggio et al. 1998; Lo et al. 2006; Daues 2006; Szymczak et al. 2009; Strøm‐
Tejsen et al. 2015).  Similarly, he optimal air pressure during sleep is equivalent to the pressure 

on the Earth at sea level (Miller and Horvath 1977; Mizuno et al. 1993; Aviator SME interview).  

Air mixtures that deviate from these conditions, such as what mountaineers experience during 

expeditions, results in disrupted sleep and periodic breathing (Reite et al. 1975; Selvamurthy et 

al. 1986; Mizuno et al. 1993; Salvaggio et al. 1998; Dietz 2001; Muza et al. 2004).  In 

depressurized environments, such as at elevation on Earth, supplemental oxygen can reduce 

headaches, periodic breathing and can improve sleep outcomes (Luks et al. 1998; Barash et al. 

2001).  Airflow is also associated with positive sleep outcomes and aids in the reduction of CO2 

(FAA 2011; Strøm‐Tejsen et al. 2015; ISS engineer SMEs interview) and intrusive odors, such 

as body odor, food, and mechanical smells (Hacker and Grimwood 1977; Bluth and Helppie 
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1986; Strøm‐Tejsen et al. 2015; Navy SMEs interview).  Although there is little information on 

the impact of air pollution and particulates on sleep quality and quantity, reports from lunar 

expeditions suggest that dust from planetary extra vehicular activities may build up in the 

habitable environment (NASA 1971; Bluth and Helppie 1986).  As a result, the vents providing 

airflow to crew sleep chambers should include air filters to protect against crewmembers 

breathing particulate matter and dust during sleep. 

 Involuntary movement due to turbulence is associated with sleep disruption (Mantsangas 

et al. 2015; Aviator SME interview; Navy SMEs interview).  Therefore, vehicle movement and 

vibration should be minimized as much as possible.  Similarly, the microgravity environment 

results in the potential for crewmembers to free-float during sleep episodes.  Although some 

crewmembers have reported that they enjoyed that experience, other crewmembers have reported 

that they prefer to be restrained while sleeping (Astronaut SME 1 interview; Astronaut SME 2 

interview; Astronaut SME 3 interview; ISS engineer SMEs interview).  Several crewmembers 

have stated that harnesses within the sleeping bag are uncomfortable (Sleeping Bag SMEs 

interview), therefore, harnesses should be provided to crewmembers on the outside of bedding to 

be used if desired.  Similarly, separate attachments should be available to secure the sleeping bag 

to the wall of the sleep chamber if desired.  Given that some individuals may not use harnesses 

and other attachments, they should be designed, so that they can be removed or secured out of 

place when not in use. 

 Although we present evidence to support the design of future space vehicles, it is possible 

that new information will be revealed in the future.  NASA supports a great deal of studies in 

analog and spaceflight environments.  We recommend that the Behavioral Health and 

Performance Element advise investigators to collect standardized questionnaires regarding sleep 

habitability and preferences from study participants living in such environments.  Such 

information should help to further define the optimal sleep environment for deep space transit. 

 In summary, sleep is critical to crewmember health and performance.  In order for 

crewmembers to achieve optimal sleep, they must be provided with a sleep environment that 

allows them to achieve quality sleep, free of external disruption.  We found that the optimal sleep 

environment is cool, dark, quiet, and is perceived as safe and private.  There are wide individual 

differences in the preferred sleep environment; therefore modifiable sleeping compartments are 

necessary to ensure all crewmembers are able to select personalized configurations for optimal 

sleep.  A sub-optimal sleep environment is tolerable for only a limited time, therefore individual 

sleeping quarters should be designed for long-duration missions.  In a confined space, the sleep 

environment serves a dual purpose as a place to sleep, but also as a place for storing personal 

items and as a place for privacy during non-sleep times.  This need for privacy during sleep and 

wake appears to be critically important to the psychological well-being of crewmembers on long-

duration missions.  Designing sleep chambers for optimal sleep health should produce benefits 

beyond simply improving sleep quality and quantity on long duration missions. 
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